Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neural stem cells derived from human embryonic stem cells carry abnormal gene expression

08.08.2006
Study may shed new light on better ways to grow potent stem cell lines

Neural stem cells grown from one of the federally approved human embryonic stem cell lines proved to be inferior to neural stem cells derived from fetal tissue donated for research, a UCLA study has found.

Researchers from the Institute for Stem Cell Biology and Medicine at UCLA coaxed cells from the federally approved line to differentiate into neural stem cells, a process that might one day be used to grow replacement cells to treat such debilitating diseases as Parkinson's and Alzheimer's. However, the neural stem cells expressed a lower level of a metabolic gene called CPT 1A, a condition that causes hypoglycemia in humans.

The study may shed new light on better ways to grow neural and other stem cells in the lab so they mirror normal cells and promote normal functioning, said Guoping Fan, an assistant professor of human genetics and a researcher in UCLA's stem cell institute. The study appears this week in an early online edition of the journal Human Molecular Genetics.

"This study is a very important first step in looking at the differentiation process in neural stem cells," said Fan, senior author of the study. "Now we have a direct measurement of the types of cells that eventually, we hope, will be used for transplantation. We can tell, are they normal or not. Understanding why these cells under-expressed CPT 1A is the first step in a comprehensive understanding of cells obtained from human embryonic stem cells."

The study, Fan said, deals with one of the most important aspects in stem cell biology - potential abnormalities in cells derived from human embryonic stem cells. Stem cells with abnormalities may not effectively treat the diseases they were created to treat, or they may result in secondary problems such as hypoglycemia, Fan said.

UCLA researchers also compared the neural stem cells they grew to cancer cells to ensure that the neural stem cells did not have any abnormalities in a DNA modification associated with gene silencing. The abnormal DNA modification is characteristically a hallmark of cancer cells. The good news, Fan said, is that the neural stem cells in their study did not share any abnormal characteristics associated with cancer. The means, theoretically, that a patient undergoing transplantation with these neural stem cells would not later develop a malignancy.

In the three-year study, researchers compared the neural stem cells grown in the lab from human embryonic stem cells to neural stem cells that already had differentiated and were derived from donated fetal tissue. The question: would the cell lines be the same and mirror the normal neural stem cells found in humans or would one cell line be superior to the other?

"Compared to the normal cells derived from the fetal tissue, the level of gene expression in the neural stem cells grown in the lab is lower," Fan said. "Proper levels of gene expression are essential for normal cell function. This study suggests that the differentiation procedure used in the lab needs to be improved so all genes are properly regulated in the stem cells we grow."

Fan and his colleagues now are studying what may have gone awry in the process they used to coax the human embryonic stem cells to differentiate into neural stem cells that may have resulted in the under-expression of the CPT 1A gene. They're also planning to repeat their work on other federally approved stem cell lines to see if the abnormality was an aberration found only in this one stem cell line. Fan and other UCLA researchers said the abnormality found in the federally approved stem cell line reinforces the need for other embryonic stem cells lines on which to conduct research.

To compare the neural stem cells, researchers extracted DNA fragments and used high throughput micro array technology to study the pattern of DNA cytosine methylation. They also monitored for levels of gene expression that are necessary for cell function as well as abnormalities that might be problematic.

"Any stem cells that might one day be used for transplantation have to be as close as possible to normal stem cells," Fan said. "The next step is to see if we can improve the way we grown these cells. I think we learned an important lesson with this study."

Kim Irwin | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>