Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human embryonic stem cells display a unique pattern of chemical modification to DNA

08.08.2006
Study suggests additional hurdles to therapeutic cloning may lie ahead

Scientists from the Burnham Institute for Medical Research (BIMR) and Illumina Inc., in collaboration with stem cell researchers around the world, have found that the DNA of human embryonic stem cells is chemically modified in a characteristic, predictable pattern. This pattern distinguishes human embryonic stem cells from normal adult cells and cell lines, including cancer cells. The study, which appears online today in Genome Research, should help researchers understand how epigenetic factors contribute to self-renewal and developmental pluripotence, unique characteristics of human embryonic stem cells that may one day allow them to be used to replace diseased or damaged cells with healthy ones in a process called therapeutic cloning.

Embryonic stem cells are derived from embryos that are undergoing a period of intense cellular activity, including the chemical addition of methyl groups to specific DNA sequences in a process known as DNA methylation. The methylation and demethylation of particular DNA sequences in the genome are known to have profound effects on cellular behavior and differentiation. For example, DNA methylation is one of the critical epigenetic events leading to the inactivation of one X chromosome in female cells. Failure to establish a normal pattern of DNA methylation during embryogenesis can cause immunological deficiencies, mental retardation and other abnormalities such as Rett, Prader-Willi, Angelman and Beckwith-Wiedemann syndromes.

Until recently, DNA methylation could only be studied one gene at a time. But a new microarray-based technique developed at Illumina enabled the scientists conducting this new study to simultaneously examine hundreds of potential methylation sites, thereby revealing global patterns. "Analyzing the DNA methylation pattern of hundreds of genes at a time opens a new window for epigenetic research," says Dr. Jian-Bing Fan, director of molecular biology at Illumina. "Exciting insights into development, aging, and cancer should come quickly from understanding global patterns of DNA methylation."

To examine global DNA methylation patterns in human embryonic stem cells, the researchers analyzed 14 human embryonic stem cell lines from diverse ethnic origins, derived in several different labs, and maintained for various times in culture. They tested over 1500 potential methylation sites in the DNA of these cells and in other cell types and found that the embryonic stem cells shared essentially identical methylation patterns in a large number of gene regions. Furthermore, these methylation patterns were distinct from those in adult stem cells, differentiated cells, and cancer cells.

"Our results suggest that therapeutic cloning of patient-specific human embryonic stem cells will be an enormous challenge, as nuclei from adult cells will have to be epigenetically reprogrammed to reflect the specific DNA methylation signature of normal human embryonic stem cells," explains Dr. Jeanne Loring, co-director of the stem cell center at BIMR. "This reinforces the need for basic research directed at understanding the fundamental biology of human embryonic stem cells before therapeutic uses can be considered."

Maria Smit | EurekAlert!
Further information:
http://www.cshl.edu
http://www.genome.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>