Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Transgenic goat's milk offers hope for tackling children's intestinal disease

It's hard to improve on milk, but animal scientists at the University of California, Davis, have found that milk produced by transgenic goats, which carry the gene for an antibacterial enzyme found in human breast milk, altered the intestinal bacteria in young goats and pigs that were fed the milk.

The researchers hope these findings will one day lead to milk that protects infants and children against diarrheal illnesses, which each year kill more than 2 million children worldwide, according to the World Health Organization. The results of their study will be reported in the August issue of the international journal Transgenic Research.

"This goat's milk represents one of the first transgenic food products that has the potential to really benefit human health," said Professor Jim Murray, who led the study along with Professor Gary Anderson and animal scientist Elizabeth Maga. "The results of the study indicate that the protective, antibacterial characteristics of lysozyme-rich human breast milk are also present in milk produced by transgenic goats that carry the gene for lysozyme."


Lysozyme is a protein found in the tears, saliva and milk of all mammals. It is found at high levels in human breast milk, however goat's milk contains only 0.06 percent as much lysozyme as does human milk. Lysozyme inhibits the growth of bacteria by destroying the bacterial cell wall, causing the contents of the cell to leak out.

Because lysozyme limits the growth of bacteria that cause intestinal infections and diarrhea, and encourages the growth of beneficial intestinal bacteria, lysozyme is considered to be one of the main components of human milk that contribute to the health and well-being of breast-fed infants.

For more than a decade, UC Davis researchers have been looking for ways to enrich the milk of cows and goats with some of the beneficial compounds like lysozyme that are found in human breast milk. About eight years ago, they used gene-transfer technology to develop a line of transgenic dairy goats that carry the gene for human lysozyme and, consequently, produce human lysozyme in their milk.

The UC Davis Study

In this study, the researchers fed pasteurized, lysozyme-rich milk produced by transgenic dairy goats to young goats and pigs. Pasteurized milk from non-transgenic goats was fed to the control group of pigs and goats.

The pigs were chosen because they have a digestive system similar to humans and are often used as a research model for humans. In this study, the pigs provide a glimpse of how such milk might impact people's digestive systems.

The kid goats were chosen for the other model in order to study the effect of the transgenic milk on ruminants -- animals like goats, sheep and cows -- which have multi-chambered stomachs.

In both animal models, the results of this study indicated that the milk from the transgenic goats was impacting the growth of digestive-tract bacteria -- although with opposite results.

The young pigs fed the lysozyme-rich milk from transgenic goats had lower levels of coliform bacteria in the small intestine, including fewer Escherichia coli (E. coli), than did the control group of young pigs that were fed milk from non-transgenic goats. Some strains of E. coli can cause severe intestinal illness.

However, the kid goats fed lysozyme-rich goat's milk, had higher levels of coliform bacteria and roughly the same level of E. coli, compared to control group.

Both the kid goats and the young pigs were healthy and exhibited normal growth patterns.

"Although the effects were different in the goats than in the pigs, the study demonstrates clearly that the consumption of pasteurized goat's milk containing human lysozyme can impact the bacterial makeup of the digestive tract in these two distinct animal models," Maga said. "It is likely that the differences observed in the two species were due to the fact that goats, being ruminants, have a different digestive system and different collection of bacteria than do the pigs, which have only one stomach."

Maga and Murray suggested that larger, more in-depth studies are needed to examine other possible benefits of the lysozyme-rich milk from the transgenic goats.


"This study underscores the potential for using biotechnology to improve the healthfulness of the milk of dairy animals by introducing the beneficial properties of human milk into dairy animals, Murray said.

He and Maga note that this procedure could be used to produce lysozyme-rich powdered milk and eventually transgenic dairy goat herds for developing nations, where intestinal diseases threaten the lives of infants and children. They project that the potential for even more widespread benefit could be realized if this technology is applied to dairy cattle, rather than goats, because the volume of milk available from cows would be much larger than from goats.

Pat Bailey | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

nachricht Activation of 2 genes linked to development of atherosclerosis
28.10.2016 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>