Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene defects in young present serious risk from environmental tobacco smoke

08.08.2006
The dangers of passive smoking are even more pronounced among young people carrying common gene defects, researchers at the University of Dundee have found.

Chronic exposure to second-hand tobacco smoke causes some children and adolescents to go on to develop serious chest problems like asthma, while others do not appear to be particularly affected.

The researchers, within the University of Dundee Medical School, believe they have discovered why only some people develop these problems. They have identified gene defects that increase the risk of developing asthma, and worsen lung function in patients with asthma, when exposed to tobacco smoke in the environment.

Dr. Somnath Mukhopadhyay, consultant paediatrician at the Children’s Asthma and Allergy Unit within Tayside Children’s Hospital, and Dr. Colin Palmer, a molecular geneticist at the Biomedical Research Centre, studied 600 children and adolescents with asthma attending GP surgeries and hospitals within Tayside.

They checked airway peak flows, using a simple blowing test, and studied genes that help eliminate inhaled toxins.

The genes that they studied help the body produce an enzyme called glutathione-S-transferase (GST), which is particularly effective in detoxifying inhaled tobacco smoke within the lungs.

However, the genes which produce GST are subject to two common defects, one of which is present in around 50% of the population with the other occurring in around 12% of the population.

The researchers found that Scottish children who have either of the two defects in the GST genes are more susceptible to asthma associated with environmental tobacco smoke exposure than those with more intact GST status.

The researchers also found that teenagers with asthma had 15% lower peak flows if they had one of the GST gene defects and were exposed to tobacco smoke, compared to asthmatic teenagers with intact gene status.

"There is a risk that these children and teenagers, naturally unaware of their susceptible status resulting from this gene defect, could be undergoing a silent, long-standing decline in lung function over the years," said Dr Mukhopadhyay.

"This can lead to greater risk of chronic obstructive lung disease, or COPD, in later life."

Scotland has the highest prevalence of teenage asthma in the world. Scots also have the highest death rate in the UK for COPD, a disease that results in numerous hospital admissions and one death every two hours in the Scottish population.

The two defects in the GST genes have defined a high-risk population of young Scottish asthmatics in whom tobacco smoke is particularly harmful. The researchers say early identification of these gene defects, with concurrent strategies targeted at the protection of the high-risk population, may be effective in the long term in reducing the prevalence of asthma in Scotland. At present there is no screening for these gene defects.

The findings of the Dundee team are published in the August 6th, 2006, issue of Pediatrics, the world’s top impact factor journal for children’s medicine and the official mouthpiece for the American Academy of Pediatrics.

Roddy Isles | alfa
Further information:
http://www.dundee.ac.uk

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>