Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rewiring the mammalian brain -- neurons make fickle friends

08.08.2006
The brain adapts to new experience by unleashing a burst of new neuronal connections, and only the fittest survive.

A new discovery from the Brain Mind Institute of the EPFL (Ecole Polytechnique Fédérale de Lausanne) shows that the brain rewires itself following an experience. The research further shows that this process of creation, testing, and reconfiguring of brain circuits takes place on a scale of just hours, suggesting that the brain is evolving considerably even during the course of a single day.

Scientists know that the strength of the connections between neurons changes to shape memories. They also know that the developing brain has a high level of plasticity as neurons forge connections with other neurons. This new research, published in the August 7, 2006 early online edition of the Proceedings of the National Academy of Sciences, goes further, investigating how neurons choose their connections with neighboring neurons. Researchers Henry Markram and Jean-Vincent Le Bé found that connections between neurons switch rapidly on and off, leading to a form of adaptive rewiring in which the brain is engaged in a continuous process of changing, strengthening and pruning its circuitry.

Studying neuron clusters from the neocortex of neonatal rats, Markram and Le Bé found that instead of growing preferentially towards specific receivers, neurons actually have no particular affinity for any other neuron, but instead remain in a state of perpetual readiness to reconfigure circuits. They found that over the course of just a few hours, connections are formed and re-formed many times.

“The circuitry of the brain is like a social network where neurons are like people, directly linked to only a few other people,” explains Markram. “This finding indicates that the brain is constantly switching alliances and linking with new circles of “friends” to better process information.”

In their samples, the rewiring process was occurring continuously at a slow pace. By exciting the sample with glutamate, they found that the rate increased markedly. This suggests that with a strong new experience, the brain accelerates its reconfiguration process, allowing new connections to be made, tested, and strengthened, and weaker ones removed so that the brain is quickly better adapted to the new situation.

“This continual rewiring of the microcircuitry of the brain is like a Darwinian evolutionary process,” notes Markram, “where a new experience triggers a burst of new connections between neurons, and only the fittest connections survive.”

Markram emphasizes that these findings may have important implications for brain research, even at a practical level. “This discovery opens up a whole new frontier for researchers as we now try to understand the evolutionary process that sets the brain on a particular course. Perhaps it could even reveal ways to steer the brain around particular circuitry pathologies such as epilepsy.”

Mary Parlange | alfa
Further information:
http://www.epfl.ch

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>