Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rewiring the mammalian brain -- neurons make fickle friends

08.08.2006
The brain adapts to new experience by unleashing a burst of new neuronal connections, and only the fittest survive.

A new discovery from the Brain Mind Institute of the EPFL (Ecole Polytechnique Fédérale de Lausanne) shows that the brain rewires itself following an experience. The research further shows that this process of creation, testing, and reconfiguring of brain circuits takes place on a scale of just hours, suggesting that the brain is evolving considerably even during the course of a single day.

Scientists know that the strength of the connections between neurons changes to shape memories. They also know that the developing brain has a high level of plasticity as neurons forge connections with other neurons. This new research, published in the August 7, 2006 early online edition of the Proceedings of the National Academy of Sciences, goes further, investigating how neurons choose their connections with neighboring neurons. Researchers Henry Markram and Jean-Vincent Le Bé found that connections between neurons switch rapidly on and off, leading to a form of adaptive rewiring in which the brain is engaged in a continuous process of changing, strengthening and pruning its circuitry.

Studying neuron clusters from the neocortex of neonatal rats, Markram and Le Bé found that instead of growing preferentially towards specific receivers, neurons actually have no particular affinity for any other neuron, but instead remain in a state of perpetual readiness to reconfigure circuits. They found that over the course of just a few hours, connections are formed and re-formed many times.

“The circuitry of the brain is like a social network where neurons are like people, directly linked to only a few other people,” explains Markram. “This finding indicates that the brain is constantly switching alliances and linking with new circles of “friends” to better process information.”

In their samples, the rewiring process was occurring continuously at a slow pace. By exciting the sample with glutamate, they found that the rate increased markedly. This suggests that with a strong new experience, the brain accelerates its reconfiguration process, allowing new connections to be made, tested, and strengthened, and weaker ones removed so that the brain is quickly better adapted to the new situation.

“This continual rewiring of the microcircuitry of the brain is like a Darwinian evolutionary process,” notes Markram, “where a new experience triggers a burst of new connections between neurons, and only the fittest connections survive.”

Markram emphasizes that these findings may have important implications for brain research, even at a practical level. “This discovery opens up a whole new frontier for researchers as we now try to understand the evolutionary process that sets the brain on a particular course. Perhaps it could even reveal ways to steer the brain around particular circuitry pathologies such as epilepsy.”

Mary Parlange | alfa
Further information:
http://www.epfl.ch

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>