Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three at MIT conceive cell-shaped building

08.08.2006
An innovative cell-shaped building will house a new biomedical research institute in Chengdu, China, thanks to an unusual crossdisciplinary collaboration between Shuguang Zhang, a world-renowned bioengineer and scientist at MIT, his former student, architecture major Sloan Kulper, and computer science and electrical engineering major Audrey Roy.

Kulper (S.B. 2003) and Roy (S.B. 2005) designed the cell-shaped building for the Institute for Nanobiomedical Technology and Membrane Biology in Chengdu, China, the regional capital of Sichuan province in southwestern China. The proposed new facility will contain 170,000 square feet of laboratory, research and meeting spaces; it is slated for construction over the next three years. The building is intended to look like a cell from the outside and to include an assortment of forms inspired by molecular biology inside.

Zhang, associate director of the Center for Biomedical Engineering, will serve as founding advisor of the new Nanobiomedical Institute, to be sited at Chengdu's Sichuan University, where Zhang received his undergraduate degree in biochemistry.

Zhang met Kulper in 2002, when he took Zhang's course, "Molecular Structure of Biological Materials: Structure, Function and Self-assembly."

In the class, Zhang frequently discusses the striking similarities between architecture and biological structures, he said. "Nature has produced abundant magnificent, intricate and fine molecular and cellular structures through billions of years of molecular selection and evolution.

"These invisible molecular and cellular structures cannot be seen by the naked eye, but can only be observed with the most sophisticated scientific tools, such as X-ray diffraction and nuclear magnetic resonance, or modeled with advanced computers. But if they can be amplified billions of times as in a building, then these molecular structures can be seen, touched and admired. At that large scale, they can also be very educational for people of all ages," Zhang said.

According to Zhang, the pioneering design for the cell-shaped building was inspired by "elegantly folded protein structures and their simple and beautiful structural motifs. The cell-shaped building attempts to combine the architecture and the biology structures," he said.

Kulper said the design of the building also arose from the pioneering spirit he discovered among life scientists and biological engineers. "They are always working at the threshold of understanding," Kulper said.

"When I took Shuguang's course, I was thrilled to learn that structural biologists had developed such an amazing language for describing new and complex forms. Also, structural biology is basically concerned with the sort of geometries that architects and designers often work with, though on a completely different scale. It's a very visual field that communicates more through illustration than through symbol," Kulper said.

The seeds of Kulper's involvement in the Sichuan University project began in conversations he had with Zhang, a known admirer of architecture, during the year in which he took Zhang's course. Zhang encouraged Kulper both to apply principles of scientific research to his work in architecture -- "Explore the unknowns and navigate the uncharted territories," he urged -- and to spend time in Zhang's laboratory learning about bioengineering.

The next year, Zhang contacted Kulper with the news that he was now the founding advisor of a new research institute at Sichuan University.

Kulper said, "Zhang offered me the opportunity to develop concepts for the building, which, as a biological research building, would give us an opportunity to design for a client that would appreciate details that referenced biological concepts. I started work on sketches immediately once he had given me some basic information regarding the functional requirements of the building as well as photos of the site in Chengdu."

Zhang said he challenged Kulper with incorporating "as many biology motifs as possible" into his design and with using realistic construction materials.

Zhang then sent Kulper to spend three summer months in Beijing with Roy, where they collaborated on a preliminary design for the building with architects at Tsinghua University's Architectural Design and Research Institute. Roy, currently a software engineer at Silicon Valley startup Sharpcast, Inc., designed and programmed "iQuarium," an interactive media installation on fish fluid dynamics, when she was at MIT.

Kulper characterized the collaboration with his Chinese design teammates as a "highly gratifying, very hybridized process."

Together, the international architecture team "developed sketches and models while simultaneously studying cellular structures that had formal similarities to the spaces we were designing. We worked with images of proteins, membranes and organelles alongside photos and textbook images of glazing systems and cantilevers," Kulper said.

On the exterior design of the building, Roy commented, "Bay windows are scattered throughout the surface of the building, just like proteins in a cell membrane. They serve as convenient meeting places attached to both laboratories and offices."

The final plan calls for a research and laboratory facility with six floors and a crystal-shaped lecture hall with a crystal diffraction pattern ceiling, full of various biology motifs, to be built for about $12 million - more than twice the current cost of a more traditional design in China, yet a small fraction of the cost of building in the United States.

Kulper hopes to visit the construction site in Chengdu in time to catch some of the 2008 Olympics in Beijing, he said.

In the meantime, Zhang has produced a book on the design process for the cell-shaped building. On viewing the renderings of the building, Institute Professor Phillip Sharp commented, "The building is very interesting. I have always wondered what it would be like working within the cell."

Ingemar Ernberg, a tumor biologist from Sweden's Karolinska Institute, not only immediately arranged for a Swedish architect to visit Zhang but also invited Zhang to give a talk to a group of Swedish architects.

As Zhang wrote in the preface of the conceptual design book, "It is hoped that the first molecular bio-architectural design will further stimulate many diverse architectural designs that are inspired from biology structures."

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>