Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify gene as protector of DNA, enemy of tumors

07.08.2006
A single gene plays a pivotal role launching two DNA damage detection and repair pathways in the human genome, suggesting that it functions as a previously unidentified tumor suppressor gene, researchers at The University of Texas M. D. Anderson Cancer Center report in Cancer Cell.

The advance online publication also reports that the gene - called BRIT1 - is under-expressed in human ovarian, breast and prostate cancer cell lines.

Defects in BRIT1 seem to be a key pathological alteration in cancer initiation and progression, the authors note, and further understanding of its function may contribute to novel, therapeutic approaches to cancer.

"Disruption of BRIT1 function abolishes DNA damage responses and leads to genomic instability," said senior author Shiaw-Yih Lin, Ph.D., assistant professor in the Department of Molecular Therapeutics at M. D. Anderson. Genomic instability fuels the initiation, growth and spread of cancer.

A signaling network of molecular checkpoint pathways protects the human genome by detecting DNA damage, initiating repair and halting division of the damaged cell so that it does not replicate.

In a series of laboratory experiments, Lin and colleagues show that BRIT1 activates two of these checkpoint pathways. The ATM pathway springs into action in response to damage caused by ionizing radiation. The ATR pathway responds to DNA damage caused by ultraviolet radiation.

By using small interfering RNA (siRNA) to silence the BRIT1 gene, the scientists shut down both checkpoint pathways in cells exposed to either type of radiation.

Researchers then used siRNA to silence the gene in normal human mammary epithelial cells (HMEC). The result: Inactivation of the gene caused chromosomal aberrations in 21.2 to 25.6 percent of cells. Control group HMEC had no cells with chromosomal aberrations. In cells with the gene silenced that were then exposed to ionizing radiation, 80 percent of cells had chromosomal aberrations.

"We also found that BRIT1 expression is aberrant in several forms of human cancer," Lin said. The team found reduced expression of the gene in 35 of 87 cases of advanced epithelial ovarian cancer. They also found reduced expression in breast and prostate cancer tissue compared with non-cancerous cells.

Genetic analysis of breast cancer specimens revealed a truncated, dysfunctional version of the BRIT1 protein in one sample.

Loss of the DNA damage checkpoint function and the ability to proliferate indefinitely are two cellular changes required for the development of cancer. Lin and colleagues have now tied the gene to both factors. They previously identified BRIT1 as a repressor of hTERT, a protein that when reactivated immortalizes cells, allowing them to multiply indefinitely.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>