Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system police learn early and sometimes badly

07.08.2006
Regulatory T cells, which function like immune system police, learn early in life what to protect, and that may include viruses, bacteria and tumors, researchers have shown.

Using genetically manipulated mice and technology that enables a snapshot of the repertoire of antigen receptors that determine what cells recognize, Medical College of Georgia researchers followed T cells as they spent time in the thymus then moved to the body.

They found regulatory T cells learn what to protect while in the thymus and that everything the cells learn may not be good, according to research in the August issue of Immunity.

It is widely believed that regulatory T cells only recognize endogenous body tissue so they can stop T cells that are predisposed to attacking it, says Dr. Leszek Ignatowicz, MCG immunologist and the study’s corresponding author.

By examining receptors on all types of T cells before and after they leave the thymus, researchers found regulatory T cells are very diverse and able to recognize endogenous tissue and invaders, Dr. Ignatowicz says.

Unfortunately, the cells also may not learn to recognize all endogenous tissue which, along with environmental and other factors, can lead to autoimmune disease.

T cell schooling in the thymus peaks in the first six weeks of life in the mouse, which roughly translates to the first 15 years of human life. Those early lessons seem to last a lifetime and the few regulatory cells that develop later will be like the early cells, says Dr. Rafal Pacholczyk, MCG immunologist and lead author.

The findings mean, essentially from the beginning, some people may have regulatory T cells less skilled at keeping the immune system from attacking their bodies and/or too skilled at protecting invaders.

It also means one day physicians might steer early education of regulatory T cells in the thymus as a way to vaccinate children against diseases such as lupus, arthritis and type 1diabetes. Or, they might add regulatory T cells to improve the mix in people who already have some bad police.

“We need some of the regulatory cells more than others,” says Dr. Ignatowicz. “We probably need more of the ones that recognize autoantigens on the pancreas and we need the ones that recognize tumors to be less frequent.”

The fact that most regulatory T cells in the body come directly from the thymus, not from other circulating T cells, also was previously unknown, Dr. Pacholczyk says. “Where they come from is the main question we wanted to answer,” says Dr. Ignatowicz.

It has been thought that some T cells circulating in the body might make the transformation, possibly because of what they are exposed to in the body. In fact T cells most aggressive at attacking endogenous tissue likely would be among those converting to protective regulatory cells, Dr. Ignatowicz says. “We did not find that does not happen, but it’s not the major mechanism for generating regulatory cells in the body,” Dr. Pacholczyk says.

All T cells are made in the bone marrow then move to the thymus as progenitor cells where they differentiate, upregulating surface receptors, which are molecules that detect different antigens. It’s a brutal process – 95 percent of the cells die in the thymus primarily because they recognize body tissue – that winds down after puberty.

All T cells wear their receptors for life, like signature hats. “We decided to compare receptors on the regulatory cells in the periphery with those in the thymus,” says Dr. Pacholczyk. By analyzing receptors on individual cells, they were able to follow the cells after they left the thymus and see if they changed.

Another key question was how regulatory T cells, which make up about 5 percent of the total T cell population, can control millions of roaming T cells. They found it was a simple matter of numbers: by wearing many hats, or antigen receptors, regulatory T cells can keep their eyes on a lot of different non-regulatory cells.

“The next question we will ask, which is a hot topic right now, is what antigens trigger receptors on regulatory T cells?” says Dr. Pacholczyk. “What do they recognize? We know now they are coming from the thymus but how they are being generated is still a question. We want to look into the nature of antigens those receptors recognize which will allow us to predict more how they are being developed in the thymus.”

Other study authors include Dr. Hanna Ignatowicz, geneticist, and Dr. Piotr Kraj, immunologist.

The research was funded by the National Institutes of Health and the Roche Foundation.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>