Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system police learn early and sometimes badly

07.08.2006
Regulatory T cells, which function like immune system police, learn early in life what to protect, and that may include viruses, bacteria and tumors, researchers have shown.

Using genetically manipulated mice and technology that enables a snapshot of the repertoire of antigen receptors that determine what cells recognize, Medical College of Georgia researchers followed T cells as they spent time in the thymus then moved to the body.

They found regulatory T cells learn what to protect while in the thymus and that everything the cells learn may not be good, according to research in the August issue of Immunity.

It is widely believed that regulatory T cells only recognize endogenous body tissue so they can stop T cells that are predisposed to attacking it, says Dr. Leszek Ignatowicz, MCG immunologist and the study’s corresponding author.

By examining receptors on all types of T cells before and after they leave the thymus, researchers found regulatory T cells are very diverse and able to recognize endogenous tissue and invaders, Dr. Ignatowicz says.

Unfortunately, the cells also may not learn to recognize all endogenous tissue which, along with environmental and other factors, can lead to autoimmune disease.

T cell schooling in the thymus peaks in the first six weeks of life in the mouse, which roughly translates to the first 15 years of human life. Those early lessons seem to last a lifetime and the few regulatory cells that develop later will be like the early cells, says Dr. Rafal Pacholczyk, MCG immunologist and lead author.

The findings mean, essentially from the beginning, some people may have regulatory T cells less skilled at keeping the immune system from attacking their bodies and/or too skilled at protecting invaders.

It also means one day physicians might steer early education of regulatory T cells in the thymus as a way to vaccinate children against diseases such as lupus, arthritis and type 1diabetes. Or, they might add regulatory T cells to improve the mix in people who already have some bad police.

“We need some of the regulatory cells more than others,” says Dr. Ignatowicz. “We probably need more of the ones that recognize autoantigens on the pancreas and we need the ones that recognize tumors to be less frequent.”

The fact that most regulatory T cells in the body come directly from the thymus, not from other circulating T cells, also was previously unknown, Dr. Pacholczyk says. “Where they come from is the main question we wanted to answer,” says Dr. Ignatowicz.

It has been thought that some T cells circulating in the body might make the transformation, possibly because of what they are exposed to in the body. In fact T cells most aggressive at attacking endogenous tissue likely would be among those converting to protective regulatory cells, Dr. Ignatowicz says. “We did not find that does not happen, but it’s not the major mechanism for generating regulatory cells in the body,” Dr. Pacholczyk says.

All T cells are made in the bone marrow then move to the thymus as progenitor cells where they differentiate, upregulating surface receptors, which are molecules that detect different antigens. It’s a brutal process – 95 percent of the cells die in the thymus primarily because they recognize body tissue – that winds down after puberty.

All T cells wear their receptors for life, like signature hats. “We decided to compare receptors on the regulatory cells in the periphery with those in the thymus,” says Dr. Pacholczyk. By analyzing receptors on individual cells, they were able to follow the cells after they left the thymus and see if they changed.

Another key question was how regulatory T cells, which make up about 5 percent of the total T cell population, can control millions of roaming T cells. They found it was a simple matter of numbers: by wearing many hats, or antigen receptors, regulatory T cells can keep their eyes on a lot of different non-regulatory cells.

“The next question we will ask, which is a hot topic right now, is what antigens trigger receptors on regulatory T cells?” says Dr. Pacholczyk. “What do they recognize? We know now they are coming from the thymus but how they are being generated is still a question. We want to look into the nature of antigens those receptors recognize which will allow us to predict more how they are being developed in the thymus.”

Other study authors include Dr. Hanna Ignatowicz, geneticist, and Dr. Piotr Kraj, immunologist.

The research was funded by the National Institutes of Health and the Roche Foundation.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>