Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping system tells skin cells whether to become scalp, palm tissues

07.08.2006
Global-positioning system aficionados know that it's possible to precisely define any location in the world with just three geographic coordinates: latitude, longitude and altitude. Now scientists at the Stanford University School of Medicine have discovered that specialized skin cells use a similar mapping system to identify where they belong in the body and how to act once they arrive.

These cellular cornerstones direct embryonic patterning and wound healing by sending vital location cues to their neighbors, and may help in growing tissue for transplant or understanding metastatic cancer.

"There is a logic to the body that we didn't understand before," said John Rinn, PhD, a postdoctoral scholar in the laboratory of Howard Chang, MD, PhD, assistant professor of dermatology. "Our skin is actively maintaining itself throughout our life, and these 'address codes' help the cells know how to respond appropriately." Rinn is the first author of the research, which is published in the current issue of Public Library of Science-Genetics.

Until now it's been a mystery as to how adult skin, which consists of basically the same components all over the body, knows to grow hair in some areas like the scalp, while manufacturing sweat glands, calluses and fingerprint whorls in others. In 1969, well-known developmental biologist Lewis Wolpert authored a famous treatise that described two possible ways for cells to know where they are in the body: Either they infer their location and adjust their behavior based on interactions with nearby cells, or they deduce their "positional identity" through the use of some type of coordinate system. The findings from the new Stanford study bolster the second possibility.

The scientists analyzed the gene-expression profiles of adult fibroblasts from more than 40 areas of the body. They found about 400 genes whose expression patterns varied with the cells' original location. Those from the top half of the body - arms, head and chest, for example - shared expression patterns that were markedly different from the patterns shared among cells from the bottom part of the body, such as the legs and feet. Similar patterns existed among cells originating close to or far from the center of the body, and those from the outer or the inner layer of the skin.

While these three rough anatomical divisions don't provide the precise coordinates of a global-positioning system, they do help explain similarities between the skin on the palms of the hands and the relatively distant soles of the feet. Like botanically similar areas of the world that share a latitude and altitude but differ in longitude, both the palms and soles are on the outer layer of the skin far from the center of the body and are more like one another than like their biological neighbors.

"Ideally, we can use this finding to develop a positional map that will allow us to correlate location with function in a way that will make it easier to regenerate certain parts of the body," said Rinn. "For example, if we need to grow skin in the laboratory to graft onto someone with badly burned palms, we'll know how to turn on the specific genes that make that type of skin." The implications are vast. Fibroblasts and other skin cells also comprise the lining of the lung and intestine as well as internal organs.

Not every kind of skin cell expresses gene patterns that can be correlated with their location in the body; the study found no such association in endothelial cells, which might depend on signals from surrounding cells.

"It's not like every cell has this code," said Rinn. "I like to think of the fibroblasts as wise, old parental cells who may tell the others how to behave." Their input is invaluable during embryogenesis, normal growth and wound healing, each of which requires location-specific responses by cells. Many of the genes identified by Rinn are known to be important in patterning the early embryo.

Rinn and his colleagues speculate that some of these processes may require more specific location indicators than the three they've currently identified. It's possible that additional cues may be provided by variations in gene expression levels too subtle to be detected in their current study. Alternatively, cell types other than fibroblasts or endothelial cells may express signals that further refine the current rough map. Finally, it's possible that adults simply don't need the same level of precision mapping as a developing embryo, and they stop broadcasting the finer points of the signal when it's no longer necessary.

Krista Conger | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>