Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quick -- what’s that smell?

04.08.2006
Time needed to identify odors reveals much about olfaction

Researchers at the Monell Chemical Senses Center have found that taking as little as a hundred milliseconds longer to smell an odor results in more accurate identification of that odor. This seemingly simple observation has important implications regarding how olfactory information is processed by the brain. The findings appear in the August issue of Neuron.

By demonstrating a clear relationship between odor sampling time and accurate odor identification, the Monell researchers solved a controversy centering on whether the brain processes olfactory information in a similar manner to how it processes visual and auditory stimuli.

"Previous published work suggested that olfaction was different from vision and audition in lacking this fundamental property," notes senior author Alan Gelperin, PhD, a computational neuroscientist. "We now can use accumulated information about these other sensory systems to help us understand olfaction."

Exactly how the many thousands of different odorants are detected and identified remains a mystery. The human nose probably contains several hundred different types of olfactory receptors, while animals with a highly developed sense of smell - such as dog, rat, or cat - may have over a thousand different receptor types. It is thought that perception of any one odorant probably involves simultaneous stimulation of several different receptors and that an olfactory code enables identification of specific odorants by the brain. Previous experience and motivational state also interact with odorant information to influence processing and identification. It still is not known how the brain deals with all this information to let us perceive odors.

Using an approach that has provided insight into information processing by the visual and auditory systems, the Monell researchers developed a new behavioral paradigm using trained mice to ask whether longer exposure to an odor would result in more accurate identification of that odor. The results indicated that the mice needed extra time to accurately identify more complex odors.

"The well-trained mouse needs almost half a second to solve a difficult olfactory discrimination task," says lead author Dmitry Rinberg, PhD. "This time window is very important as we seek to design experiments and develop models that explain what the brain is doing in the extra time it takes to identify complex odors."

Rinberg, a physicist and computational neuroscientist, comments, "The development of color television was based on extensive studies of visual sensory processing. Modern MP3 players are built based on a deep knowledge about properties of our hearing capabilities. Similarly, increased knowledge of olfactory processing has the obvious potential to open many doors, perhaps including development of electronic olfactory systems that would have capabilities such as identification of odors for medical diagnosis or detection of land mines."

Leslie Stein | EurekAlert!
Further information:
http://www.monell.org

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>