Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quick -- what’s that smell?

04.08.2006
Time needed to identify odors reveals much about olfaction

Researchers at the Monell Chemical Senses Center have found that taking as little as a hundred milliseconds longer to smell an odor results in more accurate identification of that odor. This seemingly simple observation has important implications regarding how olfactory information is processed by the brain. The findings appear in the August issue of Neuron.

By demonstrating a clear relationship between odor sampling time and accurate odor identification, the Monell researchers solved a controversy centering on whether the brain processes olfactory information in a similar manner to how it processes visual and auditory stimuli.

"Previous published work suggested that olfaction was different from vision and audition in lacking this fundamental property," notes senior author Alan Gelperin, PhD, a computational neuroscientist. "We now can use accumulated information about these other sensory systems to help us understand olfaction."

Exactly how the many thousands of different odorants are detected and identified remains a mystery. The human nose probably contains several hundred different types of olfactory receptors, while animals with a highly developed sense of smell - such as dog, rat, or cat - may have over a thousand different receptor types. It is thought that perception of any one odorant probably involves simultaneous stimulation of several different receptors and that an olfactory code enables identification of specific odorants by the brain. Previous experience and motivational state also interact with odorant information to influence processing and identification. It still is not known how the brain deals with all this information to let us perceive odors.

Using an approach that has provided insight into information processing by the visual and auditory systems, the Monell researchers developed a new behavioral paradigm using trained mice to ask whether longer exposure to an odor would result in more accurate identification of that odor. The results indicated that the mice needed extra time to accurately identify more complex odors.

"The well-trained mouse needs almost half a second to solve a difficult olfactory discrimination task," says lead author Dmitry Rinberg, PhD. "This time window is very important as we seek to design experiments and develop models that explain what the brain is doing in the extra time it takes to identify complex odors."

Rinberg, a physicist and computational neuroscientist, comments, "The development of color television was based on extensive studies of visual sensory processing. Modern MP3 players are built based on a deep knowledge about properties of our hearing capabilities. Similarly, increased knowledge of olfactory processing has the obvious potential to open many doors, perhaps including development of electronic olfactory systems that would have capabilities such as identification of odors for medical diagnosis or detection of land mines."

Leslie Stein | EurekAlert!
Further information:
http://www.monell.org

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>