Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gluing Cells - Precise sticking of living cells on carriers by microelectrochemical methods

03.08.2006
The adhesion and growth of cells on solid carriers is required for many applications. Laboratory-cultured tissues, diagnosis chips, and biosensors all have something in common: Cells need to be attached to the surface.

Suitable surfaces that induce the adhesion of cells are available, yet, there is no simple method to attach cells onto carriers at defined positions, such as in a particular pattern. The ordering of different cell types in a precise alignment was, until now, extremely complicated. Researchers from the University of Oldenburg have now developed a simple microelectrochemical method by which cells can be "glued" to an exact position on a carrier. Chuan Zhao, Irene Witte, and Gunther Wittstock have also shown that it is possible to adhere, in the same way, a different type of cell at a different location.

The carrier or chip is covered by a continuous thin coating of a material that has ethylene glycol units as free end groups. On such a coated surface, however, it is almost impossible for cells to stick. The Oldenburg research team had found, previously, that treatment with an oxidizing substance such as bromine instantly changes the antistick surface to one that is attractive to cells. This effect can also be applied to small and specific areas if the bromine is directly aimed to come into contact with these defined surface areas. To achieve this, the help of microelectrodes and a solution that contains bromide ions is required. The electrode is positioned close over selected positions of the carrier, and a short potential pulse is applied. As long as the microelectrode is on, the bromide ions will be converted into bromine. The bromine acts on the local area of the surface, however, too little bromine is formed to react extensively with the whole surface. Like a pen, the microelectrode "draws" a pattern on the carrier. If the carrier is incubated with a protein solution, then all the sites that were previously treated by the microelectrode are deposited with the protein from the solution. It is in these positions that the cells then settle. In this way, the researchers were able to cultivate human fibroblasts in a particular pattern. A second fibroblast population could be specifically adhered at further points by repeated electrochemical treatment.

Says Wittstock: "By stepwise site-directed introduction of different cell types onto the surface, our method could facilitate the formation of micropatterned co-cultures and, therefore, contribute to in vitro investigations of multicellular interactions and to tissue engineering".

Gunther Wittstock | alfa
Further information:
http://dx.doi.org/10.1002/anie.200601151

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>