Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gluing Cells - Precise sticking of living cells on carriers by microelectrochemical methods

03.08.2006
The adhesion and growth of cells on solid carriers is required for many applications. Laboratory-cultured tissues, diagnosis chips, and biosensors all have something in common: Cells need to be attached to the surface.

Suitable surfaces that induce the adhesion of cells are available, yet, there is no simple method to attach cells onto carriers at defined positions, such as in a particular pattern. The ordering of different cell types in a precise alignment was, until now, extremely complicated. Researchers from the University of Oldenburg have now developed a simple microelectrochemical method by which cells can be "glued" to an exact position on a carrier. Chuan Zhao, Irene Witte, and Gunther Wittstock have also shown that it is possible to adhere, in the same way, a different type of cell at a different location.

The carrier or chip is covered by a continuous thin coating of a material that has ethylene glycol units as free end groups. On such a coated surface, however, it is almost impossible for cells to stick. The Oldenburg research team had found, previously, that treatment with an oxidizing substance such as bromine instantly changes the antistick surface to one that is attractive to cells. This effect can also be applied to small and specific areas if the bromine is directly aimed to come into contact with these defined surface areas. To achieve this, the help of microelectrodes and a solution that contains bromide ions is required. The electrode is positioned close over selected positions of the carrier, and a short potential pulse is applied. As long as the microelectrode is on, the bromide ions will be converted into bromine. The bromine acts on the local area of the surface, however, too little bromine is formed to react extensively with the whole surface. Like a pen, the microelectrode "draws" a pattern on the carrier. If the carrier is incubated with a protein solution, then all the sites that were previously treated by the microelectrode are deposited with the protein from the solution. It is in these positions that the cells then settle. In this way, the researchers were able to cultivate human fibroblasts in a particular pattern. A second fibroblast population could be specifically adhered at further points by repeated electrochemical treatment.

Says Wittstock: "By stepwise site-directed introduction of different cell types onto the surface, our method could facilitate the formation of micropatterned co-cultures and, therefore, contribute to in vitro investigations of multicellular interactions and to tissue engineering".

Gunther Wittstock | alfa
Further information:
http://dx.doi.org/10.1002/anie.200601151

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>