Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gluing Cells - Precise sticking of living cells on carriers by microelectrochemical methods

03.08.2006
The adhesion and growth of cells on solid carriers is required for many applications. Laboratory-cultured tissues, diagnosis chips, and biosensors all have something in common: Cells need to be attached to the surface.

Suitable surfaces that induce the adhesion of cells are available, yet, there is no simple method to attach cells onto carriers at defined positions, such as in a particular pattern. The ordering of different cell types in a precise alignment was, until now, extremely complicated. Researchers from the University of Oldenburg have now developed a simple microelectrochemical method by which cells can be "glued" to an exact position on a carrier. Chuan Zhao, Irene Witte, and Gunther Wittstock have also shown that it is possible to adhere, in the same way, a different type of cell at a different location.

The carrier or chip is covered by a continuous thin coating of a material that has ethylene glycol units as free end groups. On such a coated surface, however, it is almost impossible for cells to stick. The Oldenburg research team had found, previously, that treatment with an oxidizing substance such as bromine instantly changes the antistick surface to one that is attractive to cells. This effect can also be applied to small and specific areas if the bromine is directly aimed to come into contact with these defined surface areas. To achieve this, the help of microelectrodes and a solution that contains bromide ions is required. The electrode is positioned close over selected positions of the carrier, and a short potential pulse is applied. As long as the microelectrode is on, the bromide ions will be converted into bromine. The bromine acts on the local area of the surface, however, too little bromine is formed to react extensively with the whole surface. Like a pen, the microelectrode "draws" a pattern on the carrier. If the carrier is incubated with a protein solution, then all the sites that were previously treated by the microelectrode are deposited with the protein from the solution. It is in these positions that the cells then settle. In this way, the researchers were able to cultivate human fibroblasts in a particular pattern. A second fibroblast population could be specifically adhered at further points by repeated electrochemical treatment.

Says Wittstock: "By stepwise site-directed introduction of different cell types onto the surface, our method could facilitate the formation of micropatterned co-cultures and, therefore, contribute to in vitro investigations of multicellular interactions and to tissue engineering".

Gunther Wittstock | alfa
Further information:
http://dx.doi.org/10.1002/anie.200601151

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>