Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novelty aids learning

03.08.2006
Exposure to new experiences improves memory, according to research by UCL (University College London) psychologists and medical doctors that could hold major implications for the treatment of memory problems. The study, published in ‘Neuron’ on 3 August, concludes that introducing completely new facts when learning, significantly improves memory performance.

Researchers have long suspected that the human brain is particularly attracted to new information and that this might be important for learning. They are now a step closer to understanding why.

A region in the midbrain (substantia nigra/ventral tegmental), which is responsible for regulating our motivation and reward-processing, responds better to novelty than to the familiar. This system also regulates levels of dopamine, a neurotransmitter in the brain, and could aid learning. This link between memory, novelty, motivation and reward could help patients with memory problems.

Dr Emrah Düzel, UCL Institute of Cognitive Neuroscience, said: “We hope that these findings will have an impact on behavioural treatments for patients with poor memory. Current practice by behavioural psychologists aims to improve memory through repeatedly exposing a person to information – just as we do when we revise for an exam. This study shows that revising is more effective if you mix new facts in with the old. You actually learn better, even though your brain is also tied up with new information.

“It is a well-known fact amongst scientists that the midbrain region regulates our levels of motivation and our ability to predict rewards by releasing dopamine in the frontal and temporal regions of the brain. We have now shown that novelty activates this brain area. We believe that experiencing novelty might, in itself, have an impact on our dopamine levels. Our next project will be to test the role of dopamine in learning. These findings could have implications for drug development.”

Subjects took part in a series of tests. The first experiment assessed whether the brain prefers novel stimuli over familiar stimuli even when the familiar images are made significant because they are either rare or depict emotionally negative content. Subjects were shown images of indoor and outdoor scenes and faces, while their brain activity was analysed using an fMRI scanner. Some images rarely popped up and some were emotionally negative, such as an angry face or a car accident. Even the rare and emotional images did not activate the midbrain. It responded only to new images.

The second experiment, using fMRI, made some of the images more or less familiar to test how this relativity affected brain activity. It did not – only completely new images produced activity in the midbrain area.

Dr Düzel said: “We thought that less familiar information would stand out as being significant when mixed with well-learnt, very familiar information and so activate the midbrain region just as strongly as absolutely new information. That was not the case. Only completely new things cause strong activity in the midbrain area.”

Separate behavioural experiments were also conducted without the use of a scanner to test the subjects’ memory. Their memory of the novel, familiar and very familiar images they had studied was tested after 20 minutes and then a day later. Subjects performed best in these tests when new information was combined with familiar information during learning. After a 20 minute delay, subjects’ memory for slightly familiar information was boosted by 19 per cent if it had been mixed with new facts during learning sessions.

Dr Düzel said: “When we see something new, we see it has a potential for rewarding us in some way. This potential that lies in new things motivates us to explore our environment for rewards. The brain learns that the stimulus, once familiar, has no reward associated with it and so it loses its potential. For this reason, only completely new objects activate the midbrain area and increase our levels of dopamine.”

Dominique Fourniol | alfa
Further information:
http://www.ucl.ac.uk

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>