Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dengue Virus Reveals Its Circular Secret

02.08.2006
The first step in the transmission of mosquito-borne viruses is no mystery: it's the pesky insect's bite that allows the virus to enter its victim's bloodstream. But for some of the most dangerous insect-borne viruses, details of what happens next have been unclear.

In a finding that could help scientists develop ways to prevent or treat certain infections, researchers led by a Howard Hughes Medical Institute (HHMI) international scholar in Argentina have identified a genetic element that the dengue virus uses to replicate, triggering the potentially fatal illness known as dengue hemorrhagic fever.

In the August 15, 2006, issue of the journal Genes & Development, published online August 1, 2006, virologist Andrea Gamarnik and colleagues at Leloir Institute Foundation in Buenos Aires, describe how a viral enzyme recognizes and amplifies the genetic material needed to assemble new dengue viruses. Their findings provide the first model for RNA replication in the family of viruses that includes West Nile, St. Louis encephalitis, and hepatitis C.

These viruses, known as flaviviruses, cause millions of cases of human illness each year, but no vaccines or antiviral drugs exist to control most of the infections. Dengue fever is endemic in many tropical and subtropical regions, causing a severe, flu-like illness that sickens more than 50 million people and kills 25,000 each year.

Once a virus enters a host cell, its top priority is to copy its genetic code so that it can make more virus. Flaviviruses are so efficient at this task that they can churn out tens of thousands of copies of their genome—which is composed of ribonucleic acid, or RNA—within hours of infecting a cell.

For dengue and other flaviviruses, the first step is to produce viral proteins, including an enzyme that can copy RNA. But the viral RNA is not the only RNA in an infected cell. So once the enzyme, called RNA-dependent RNA polymerase (RdRp), is produced, it finds itself surrounded by cellular RNA, creating a dilemma: How does RdRp distinguish viral from cellular RNA, to replicate the right molecule?

Last year, Gamarnik got her first hint when her group identified two RNA sequences located at the ends of the dengue virus genome. These short sequences interact during RNA replication, shaping the viral RNA genome into a circle. Gamarnik's team published those findings in the June 2005 issue of the Journal of Virology.

Further studies of the dengue virus life cycle revealed another piece of the virus's RNA that recruits the enzyme RdRp. Found at one tip of the genome, that sequence adopts a characteristic stem-loop structure that the scientists suspected might be important to its function.

To test whether RdRp was relying on that stem-loop shape to recognize the viral RNA, the scientists created copies of the dengue genome with minor changes that would alter its structures. The mutated RNAs were then inserted into mosquito cells or hamster cells to see if the viral RNA would be copied.

To their surprise, the scientists found that the stem-loop or SLA sequence is essential for viral replication. Changes in even one or two building blocks in this structure were enough to halt the replication process. "That told us that RdRp probably discriminates the viral RNA by recognizing SLA," Gamarnik said.

To confirm the vital link between RdRp and SLA, the researchers allowed virus particles that couldn't replicate to evolve in cells grown in lab dishes. Spontaneous mutations that occurred in the SLA often restored RdRp's activity and full viral replication capacity.

The scientists didn't expect to find that RdRp activity relies on a sequence at the far end of the genome, thousands of nucleotides away from the end where the enzyme begins copying the RNA.

The new discovery makes sense, Gamarnik said, because the circular shape adopted by the virus brings the distant ends of its genome together. "At first we were puzzled by the cyclization feature of this virus,” said Gamarnik. "We now recognize that it serves a role in bringing the SLA promoter near the initiation site."

Paul Ahlquist, an HHMI investigator at the University of Wisconsin–Madison and an expert on RNA viruses, said that the Gamarnik team's findings explain prior observations from her lab and others that binding between the 5-prime and 3-prime ends of the viral genome is required for replication of dengue and several other medically important flaviviruses. "These insights suggest possible mechanisms by which flaviviruses may regulate some distinct replication steps, and might ultimately provide foundations for new antiflavivirus strategies," Ahlquist said.

Jennifer Donovan | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht First line of defence against influenza further decoded
21.02.2018 | Helmholtz-Zentrum für Infektionsforschung

nachricht Helping in spite of risk: Ants perform risk-averse sanitary care of infectious nest mates
21.02.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

World's first solar fuels reactor for night passes test

21.02.2018 | Earth Sciences

Similarities found in cancer initiation in kidney, liver, stomach, pancreas

21.02.2018 | Health and Medicine

First line of defence against influenza further decoded

21.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>