Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dengue Virus Reveals Its Circular Secret

02.08.2006
The first step in the transmission of mosquito-borne viruses is no mystery: it's the pesky insect's bite that allows the virus to enter its victim's bloodstream. But for some of the most dangerous insect-borne viruses, details of what happens next have been unclear.

In a finding that could help scientists develop ways to prevent or treat certain infections, researchers led by a Howard Hughes Medical Institute (HHMI) international scholar in Argentina have identified a genetic element that the dengue virus uses to replicate, triggering the potentially fatal illness known as dengue hemorrhagic fever.

In the August 15, 2006, issue of the journal Genes & Development, published online August 1, 2006, virologist Andrea Gamarnik and colleagues at Leloir Institute Foundation in Buenos Aires, describe how a viral enzyme recognizes and amplifies the genetic material needed to assemble new dengue viruses. Their findings provide the first model for RNA replication in the family of viruses that includes West Nile, St. Louis encephalitis, and hepatitis C.

These viruses, known as flaviviruses, cause millions of cases of human illness each year, but no vaccines or antiviral drugs exist to control most of the infections. Dengue fever is endemic in many tropical and subtropical regions, causing a severe, flu-like illness that sickens more than 50 million people and kills 25,000 each year.

Once a virus enters a host cell, its top priority is to copy its genetic code so that it can make more virus. Flaviviruses are so efficient at this task that they can churn out tens of thousands of copies of their genome—which is composed of ribonucleic acid, or RNA—within hours of infecting a cell.

For dengue and other flaviviruses, the first step is to produce viral proteins, including an enzyme that can copy RNA. But the viral RNA is not the only RNA in an infected cell. So once the enzyme, called RNA-dependent RNA polymerase (RdRp), is produced, it finds itself surrounded by cellular RNA, creating a dilemma: How does RdRp distinguish viral from cellular RNA, to replicate the right molecule?

Last year, Gamarnik got her first hint when her group identified two RNA sequences located at the ends of the dengue virus genome. These short sequences interact during RNA replication, shaping the viral RNA genome into a circle. Gamarnik's team published those findings in the June 2005 issue of the Journal of Virology.

Further studies of the dengue virus life cycle revealed another piece of the virus's RNA that recruits the enzyme RdRp. Found at one tip of the genome, that sequence adopts a characteristic stem-loop structure that the scientists suspected might be important to its function.

To test whether RdRp was relying on that stem-loop shape to recognize the viral RNA, the scientists created copies of the dengue genome with minor changes that would alter its structures. The mutated RNAs were then inserted into mosquito cells or hamster cells to see if the viral RNA would be copied.

To their surprise, the scientists found that the stem-loop or SLA sequence is essential for viral replication. Changes in even one or two building blocks in this structure were enough to halt the replication process. "That told us that RdRp probably discriminates the viral RNA by recognizing SLA," Gamarnik said.

To confirm the vital link between RdRp and SLA, the researchers allowed virus particles that couldn't replicate to evolve in cells grown in lab dishes. Spontaneous mutations that occurred in the SLA often restored RdRp's activity and full viral replication capacity.

The scientists didn't expect to find that RdRp activity relies on a sequence at the far end of the genome, thousands of nucleotides away from the end where the enzyme begins copying the RNA.

The new discovery makes sense, Gamarnik said, because the circular shape adopted by the virus brings the distant ends of its genome together. "At first we were puzzled by the cyclization feature of this virus,” said Gamarnik. "We now recognize that it serves a role in bringing the SLA promoter near the initiation site."

Paul Ahlquist, an HHMI investigator at the University of Wisconsin–Madison and an expert on RNA viruses, said that the Gamarnik team's findings explain prior observations from her lab and others that binding between the 5-prime and 3-prime ends of the viral genome is required for replication of dengue and several other medically important flaviviruses. "These insights suggest possible mechanisms by which flaviviruses may regulate some distinct replication steps, and might ultimately provide foundations for new antiflavivirus strategies," Ahlquist said.

Jennifer Donovan | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>