Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pinning down a cancer threesome

02.08.2006
Studying mice with skin cancer, researchers at the Swiss Institute for Experimental Cancer Research (ISREC) and EPFL (Ecole Polytechnique Federale de Lausanne) have identified a three-way signaling pathway directly involved in tumor development. Their research, published in the August 1, 2006 issue of Genes and Development, pins down a process that could potentially be manipulated to inhibit the growth of existing carcinomas.

Genetic mutations in our cells accumulate as we age, and carcinomas are associated with alterations in certain key genes, known as tumor suppressor genes and oncogenes. The overexpression of oncogenes disrupts complex cellular signaling pathways and leads to tumor development. However, most oncogenes also play a variety of essential roles in the normal function of a cell. It is extremely difficult to pinpoint the interplay of genetic and cellular events that goes awry when a cell becomes cancerous.

To better understand the intertwined roles of three genes known to be implicated in skin cancer, Professor Andreas Trumpp and PhD student Thordur Oskarsson studied mice that carried a mutated form of one of them, the oncogene Ras. They then genetically engineered mice whose skin cells also lacked another oncogene, c-myc. The c-myc gene is known to be a master regulator in the cell, responsible for controlling several hundred other genes.

Their first surprise was that the mice without the c-myc gene in their skin cells didn't suffer any adverse effects. Unexpectedly, epidermal cells do not require c-myc for survival, normal differentiation or cellular division. However, even more surprising was that these same mice were completely resistant to developing skin cancer, even though they carried the mutated Ras gene, known to drive tumor development. As expected, mice in the control group carrying a normal copy of the c-myc gene developed cancer.

A piece of the puzzle was clearly missing. The researchers found this in a tumor-suppressing gene known as p21. Mutated Ras drastically increases the level of p21 in the cell, and in this way the tumor-causing effects of Ras are held in check, because p21 inhibits uncontrolled proliferation. However, mutated Ras is a vicious oncogene and has found a way to remove the tumor-suppressing effect of p21. It does this by simultaneously driving increased c-myc activity, which in turn eliminates p21. Thus, epidermis with mutated Ras but no c-myc cannot form tumors as p21 remains highly expressed. Trumpp and his colleagues proved the newly uncovered relationship of this cancer threesome by engineering mice lacking both the c-myc and the p21 genes. As predicted, these mice became sensitive to mutated Ras again and developed extensive skin tumors.

"This work is in vivo proof-of-concept of a key pathway in epithelial tumors," remarks Trumpp. "The gene that is truly critical and protects the cells from oncogenic activity is p21. Inhibiting the c-myc pathway was always thought to be unreasonable because this gene is thought to be implicated in so many cellular functions. However, this might prove to be promising avenue for treating existing carcinomas, because it would only affect tumors and not normal skin cells."

Andreas Trumpp | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>