Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pinning down a cancer threesome

02.08.2006
Studying mice with skin cancer, researchers at the Swiss Institute for Experimental Cancer Research (ISREC) and EPFL (Ecole Polytechnique Federale de Lausanne) have identified a three-way signaling pathway directly involved in tumor development. Their research, published in the August 1, 2006 issue of Genes and Development, pins down a process that could potentially be manipulated to inhibit the growth of existing carcinomas.

Genetic mutations in our cells accumulate as we age, and carcinomas are associated with alterations in certain key genes, known as tumor suppressor genes and oncogenes. The overexpression of oncogenes disrupts complex cellular signaling pathways and leads to tumor development. However, most oncogenes also play a variety of essential roles in the normal function of a cell. It is extremely difficult to pinpoint the interplay of genetic and cellular events that goes awry when a cell becomes cancerous.

To better understand the intertwined roles of three genes known to be implicated in skin cancer, Professor Andreas Trumpp and PhD student Thordur Oskarsson studied mice that carried a mutated form of one of them, the oncogene Ras. They then genetically engineered mice whose skin cells also lacked another oncogene, c-myc. The c-myc gene is known to be a master regulator in the cell, responsible for controlling several hundred other genes.

Their first surprise was that the mice without the c-myc gene in their skin cells didn't suffer any adverse effects. Unexpectedly, epidermal cells do not require c-myc for survival, normal differentiation or cellular division. However, even more surprising was that these same mice were completely resistant to developing skin cancer, even though they carried the mutated Ras gene, known to drive tumor development. As expected, mice in the control group carrying a normal copy of the c-myc gene developed cancer.

A piece of the puzzle was clearly missing. The researchers found this in a tumor-suppressing gene known as p21. Mutated Ras drastically increases the level of p21 in the cell, and in this way the tumor-causing effects of Ras are held in check, because p21 inhibits uncontrolled proliferation. However, mutated Ras is a vicious oncogene and has found a way to remove the tumor-suppressing effect of p21. It does this by simultaneously driving increased c-myc activity, which in turn eliminates p21. Thus, epidermis with mutated Ras but no c-myc cannot form tumors as p21 remains highly expressed. Trumpp and his colleagues proved the newly uncovered relationship of this cancer threesome by engineering mice lacking both the c-myc and the p21 genes. As predicted, these mice became sensitive to mutated Ras again and developed extensive skin tumors.

"This work is in vivo proof-of-concept of a key pathway in epithelial tumors," remarks Trumpp. "The gene that is truly critical and protects the cells from oncogenic activity is p21. Inhibiting the c-myc pathway was always thought to be unreasonable because this gene is thought to be implicated in so many cellular functions. However, this might prove to be promising avenue for treating existing carcinomas, because it would only affect tumors and not normal skin cells."

Andreas Trumpp | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>