Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pinning down a cancer threesome

02.08.2006
Studying mice with skin cancer, researchers at the Swiss Institute for Experimental Cancer Research (ISREC) and EPFL (Ecole Polytechnique Federale de Lausanne) have identified a three-way signaling pathway directly involved in tumor development. Their research, published in the August 1, 2006 issue of Genes and Development, pins down a process that could potentially be manipulated to inhibit the growth of existing carcinomas.

Genetic mutations in our cells accumulate as we age, and carcinomas are associated with alterations in certain key genes, known as tumor suppressor genes and oncogenes. The overexpression of oncogenes disrupts complex cellular signaling pathways and leads to tumor development. However, most oncogenes also play a variety of essential roles in the normal function of a cell. It is extremely difficult to pinpoint the interplay of genetic and cellular events that goes awry when a cell becomes cancerous.

To better understand the intertwined roles of three genes known to be implicated in skin cancer, Professor Andreas Trumpp and PhD student Thordur Oskarsson studied mice that carried a mutated form of one of them, the oncogene Ras. They then genetically engineered mice whose skin cells also lacked another oncogene, c-myc. The c-myc gene is known to be a master regulator in the cell, responsible for controlling several hundred other genes.

Their first surprise was that the mice without the c-myc gene in their skin cells didn't suffer any adverse effects. Unexpectedly, epidermal cells do not require c-myc for survival, normal differentiation or cellular division. However, even more surprising was that these same mice were completely resistant to developing skin cancer, even though they carried the mutated Ras gene, known to drive tumor development. As expected, mice in the control group carrying a normal copy of the c-myc gene developed cancer.

A piece of the puzzle was clearly missing. The researchers found this in a tumor-suppressing gene known as p21. Mutated Ras drastically increases the level of p21 in the cell, and in this way the tumor-causing effects of Ras are held in check, because p21 inhibits uncontrolled proliferation. However, mutated Ras is a vicious oncogene and has found a way to remove the tumor-suppressing effect of p21. It does this by simultaneously driving increased c-myc activity, which in turn eliminates p21. Thus, epidermis with mutated Ras but no c-myc cannot form tumors as p21 remains highly expressed. Trumpp and his colleagues proved the newly uncovered relationship of this cancer threesome by engineering mice lacking both the c-myc and the p21 genes. As predicted, these mice became sensitive to mutated Ras again and developed extensive skin tumors.

"This work is in vivo proof-of-concept of a key pathway in epithelial tumors," remarks Trumpp. "The gene that is truly critical and protects the cells from oncogenic activity is p21. Inhibiting the c-myc pathway was always thought to be unreasonable because this gene is thought to be implicated in so many cellular functions. However, this might prove to be promising avenue for treating existing carcinomas, because it would only affect tumors and not normal skin cells."

Andreas Trumpp | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>