Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Timing of food consumption activates genes in specific brain area

01.08.2006
Giving up your regular late-night snack may be hard, and not just because it's a routine. The habit may genetically change an area of the brain to expect the food at that time, researchers at UT Southwestern Medical Center have discovered.

By training mice to eat at a time when they normally wouldn't, the researchers found that food turns on body-clock genes in a particular area of the brain. Even when the food stopped coming, the genes continued to activate at the expected mealtime.

"This might be an entrance to the whole mysterious arena of how metabolic conditions in an animal can synchronize themselves with a body clock," said Dr. Masashi Yanagisawa, professor of molecular genetics and senior author of the study.

The UT Southwestern researchers report their findings in the Aug. 8 issue of the Proceedings of the National Academy of Sciences.

The daily ups-and-downs of waking, eating and other bodily processes are known as circadian rhythms, which are regulated by many internal and external forces. One class of genes involved in these cycles is known as Period or Per genes.

When food is freely available, the strongest controlling force is light, which sets a body's sleep/wake cycle, among other functions. Light acts on an area in the brain called the suprachiasmatic nucleus, or SCN.

But because destroying the SCN doesn't affect the body clock that paces feeding behavior, the circadian pacemaker for feeding must be somewhere else, Dr. Yanagisawa said.

To find the answer, his group did a simple but labor-intensive experiment. The scientists set the mice on a regular feeding schedule, then examined their brain tissue to find where Per genes were turned on in sync with feeding times.

The researchers put the mice on a 12-hour light/dark cycle, and provided food for four hours in the middle of the light portion.

Because mice normally feed at night, this pattern is similar to humans eating at inappropriate times. Dysfunctional eating patterns play a role in human obesity, particularly in the nocturnal eating often seen in obese people, the researchers note.

The mice soon fell into a pattern of searching for food two hours before each feeding time. They also flipped their normal day/night behavior, ignoring the natural cue that day is their usual time to sleep.

After several days, the researchers found that the daily activation cycle of Per genes in the SCN was not affected by the abnormal feeding pattern.

However, in a few different areas of the brain, particularly a center called the dorsomedial hypothamalic nucleus or DMH, the Per genes turned on strongly in sync with feeding time after seven days.

When the mice subsequently went two days without food, the genes continued to turn on in sync with the expected feeding time.

"They started to show the same pattern of anticipatory behaviors several hours before the previously scheduled time of feeding," said Dr. Yanagisawa, a Howard Hughes Medical Institute investigator. "So somewhere in the body, they clearly remembered this time of day."

Upcoming research will focus on how the centers that control various body clocks communicate with each other, Dr. Yanagisawa said.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>