Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Timing of food consumption activates genes in specific brain area

01.08.2006
Giving up your regular late-night snack may be hard, and not just because it's a routine. The habit may genetically change an area of the brain to expect the food at that time, researchers at UT Southwestern Medical Center have discovered.

By training mice to eat at a time when they normally wouldn't, the researchers found that food turns on body-clock genes in a particular area of the brain. Even when the food stopped coming, the genes continued to activate at the expected mealtime.

"This might be an entrance to the whole mysterious arena of how metabolic conditions in an animal can synchronize themselves with a body clock," said Dr. Masashi Yanagisawa, professor of molecular genetics and senior author of the study.

The UT Southwestern researchers report their findings in the Aug. 8 issue of the Proceedings of the National Academy of Sciences.

The daily ups-and-downs of waking, eating and other bodily processes are known as circadian rhythms, which are regulated by many internal and external forces. One class of genes involved in these cycles is known as Period or Per genes.

When food is freely available, the strongest controlling force is light, which sets a body's sleep/wake cycle, among other functions. Light acts on an area in the brain called the suprachiasmatic nucleus, or SCN.

But because destroying the SCN doesn't affect the body clock that paces feeding behavior, the circadian pacemaker for feeding must be somewhere else, Dr. Yanagisawa said.

To find the answer, his group did a simple but labor-intensive experiment. The scientists set the mice on a regular feeding schedule, then examined their brain tissue to find where Per genes were turned on in sync with feeding times.

The researchers put the mice on a 12-hour light/dark cycle, and provided food for four hours in the middle of the light portion.

Because mice normally feed at night, this pattern is similar to humans eating at inappropriate times. Dysfunctional eating patterns play a role in human obesity, particularly in the nocturnal eating often seen in obese people, the researchers note.

The mice soon fell into a pattern of searching for food two hours before each feeding time. They also flipped their normal day/night behavior, ignoring the natural cue that day is their usual time to sleep.

After several days, the researchers found that the daily activation cycle of Per genes in the SCN was not affected by the abnormal feeding pattern.

However, in a few different areas of the brain, particularly a center called the dorsomedial hypothamalic nucleus or DMH, the Per genes turned on strongly in sync with feeding time after seven days.

When the mice subsequently went two days without food, the genes continued to turn on in sync with the expected feeding time.

"They started to show the same pattern of anticipatory behaviors several hours before the previously scheduled time of feeding," said Dr. Yanagisawa, a Howard Hughes Medical Institute investigator. "So somewhere in the body, they clearly remembered this time of day."

Upcoming research will focus on how the centers that control various body clocks communicate with each other, Dr. Yanagisawa said.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>