Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malignant melanoma cells secrete protein required for embryo formation

01.08.2006
A Northwestern University research group has discovered that aggressive melanoma cells secrete Nodal, a protein that is critical to proper embryo formation.

An article describing this research was published today in the advanced online issue of the journal Nature Medicine. The researchers identified the potent and highly unstable embryonic growth factor by injecting aggressive melanoma cells into developing zebrafish embryos, which were used as "biosensors" for tumor cell-derived signals, and were consequently able to induce ectopic (abnormal) embryonic skull and backbone (axes) formation.

"This finding highlights the convergence of tumorigenic and embryonic signaling pathways. From a translational perspective, Nodal signaling provides a novel target for treatment of aggressive cancers such as melanomas," said Mary J. C. Hendrix, the corresponding author, of Children's Memorial Research Center where the discovery was made.

Hendrix is president and scientific director of the Children's Memorial Research Center, professor of pediatrics at Northwestern University Feinberg School of Medicine and a member of the executive committee of The Robert H. Lurie Comprehensive Cancer Center of Northwestern University. Jolanta M. Topczewska and Lynne-Marie Postovit, from Children's Memorial Research Center, co-led the study. Working with Brian Nickoloff of the Cardinal Bernardin Cancer Center at Loyola University Stritch School of Medicine, the investigators found that Nodal protein was present in 60 percent of cutaneous (skin) metastatic melanoma tumors but is absent in normal skin.

They also found that blocking Nodal signaling reduced melanoma cell invasiveness, as well as cancer cell colony formation and tumor-forming ability. Strikingly, nodal inhibition promoted the reversion of these cells toward a normal skin cell type. Like embryonic stem cells, malignant tumor cells similarly receive and send molecular cues during development that promote tumor growth and metastasis, or cancer spread.

The Northwestern study takes advantage of these similarities by using the developing zebrafish to "detect" tumor-derived chemical signals.

In addition, one of the hallmarks of aggressive cancer cells, including malignant melanoma, is their unspecified, "plastic" nature, which is similar to that of embryonic stem cells, expressing genes characteristic of multiple cell types, including endothelial, neural and stem cells.

The Hendrix lab has long hypothesized that the plastic nature of malignant melanoma cells serves as an advantage by enhancing the cells' ability to migrate, invade and metastasize virtually undetected by the immune system.

In this study, the researchers showed that aggressive tumor cells, particularly melanoma, are capable of responding to microenvironmental factors as well as influencing other cells via epigenetic (other than genetic) mechanisms, a quality known as bi-directional cellular communication. Bi-directional cellular communication is integral to both cancer progression and embryological development.

The significance of the research team's finding is profound in that it implies that through secretion of Nodal, aggressive melanoma cells maintain their plasticity and modulate the microenvironment, as exemplified by their ability to direct the formation of zebrafish tissues.

These results also highlight the propensity of tumor cells to communicate bi-directionally and survive within an embryonic microenvironment. Further, the findings illuminate the remarkable plasticity of melanoma cells and the utility of the developing zebrafish as a model for studying the epigenetic modulation of tumor cells.

Melanoma is one of the deadliest forms of cancer. The five-year survival rate for melanoma patients with widespread disease is between 7 percent and 19 percent.

Elizabeth Crown | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>