Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malignant melanoma cells secrete protein required for embryo formation

01.08.2006
A Northwestern University research group has discovered that aggressive melanoma cells secrete Nodal, a protein that is critical to proper embryo formation.

An article describing this research was published today in the advanced online issue of the journal Nature Medicine. The researchers identified the potent and highly unstable embryonic growth factor by injecting aggressive melanoma cells into developing zebrafish embryos, which were used as "biosensors" for tumor cell-derived signals, and were consequently able to induce ectopic (abnormal) embryonic skull and backbone (axes) formation.

"This finding highlights the convergence of tumorigenic and embryonic signaling pathways. From a translational perspective, Nodal signaling provides a novel target for treatment of aggressive cancers such as melanomas," said Mary J. C. Hendrix, the corresponding author, of Children's Memorial Research Center where the discovery was made.

Hendrix is president and scientific director of the Children's Memorial Research Center, professor of pediatrics at Northwestern University Feinberg School of Medicine and a member of the executive committee of The Robert H. Lurie Comprehensive Cancer Center of Northwestern University. Jolanta M. Topczewska and Lynne-Marie Postovit, from Children's Memorial Research Center, co-led the study. Working with Brian Nickoloff of the Cardinal Bernardin Cancer Center at Loyola University Stritch School of Medicine, the investigators found that Nodal protein was present in 60 percent of cutaneous (skin) metastatic melanoma tumors but is absent in normal skin.

They also found that blocking Nodal signaling reduced melanoma cell invasiveness, as well as cancer cell colony formation and tumor-forming ability. Strikingly, nodal inhibition promoted the reversion of these cells toward a normal skin cell type. Like embryonic stem cells, malignant tumor cells similarly receive and send molecular cues during development that promote tumor growth and metastasis, or cancer spread.

The Northwestern study takes advantage of these similarities by using the developing zebrafish to "detect" tumor-derived chemical signals.

In addition, one of the hallmarks of aggressive cancer cells, including malignant melanoma, is their unspecified, "plastic" nature, which is similar to that of embryonic stem cells, expressing genes characteristic of multiple cell types, including endothelial, neural and stem cells.

The Hendrix lab has long hypothesized that the plastic nature of malignant melanoma cells serves as an advantage by enhancing the cells' ability to migrate, invade and metastasize virtually undetected by the immune system.

In this study, the researchers showed that aggressive tumor cells, particularly melanoma, are capable of responding to microenvironmental factors as well as influencing other cells via epigenetic (other than genetic) mechanisms, a quality known as bi-directional cellular communication. Bi-directional cellular communication is integral to both cancer progression and embryological development.

The significance of the research team's finding is profound in that it implies that through secretion of Nodal, aggressive melanoma cells maintain their plasticity and modulate the microenvironment, as exemplified by their ability to direct the formation of zebrafish tissues.

These results also highlight the propensity of tumor cells to communicate bi-directionally and survive within an embryonic microenvironment. Further, the findings illuminate the remarkable plasticity of melanoma cells and the utility of the developing zebrafish as a model for studying the epigenetic modulation of tumor cells.

Melanoma is one of the deadliest forms of cancer. The five-year survival rate for melanoma patients with widespread disease is between 7 percent and 19 percent.

Elizabeth Crown | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>