Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What do a shark fin and a human leg have in common?

01.08.2006
One of the most important milestones in the evolution of life occurred when paired fins (and later limbs) appeared, leading to new types of locomotion.

Now, in the advanced online issue of Nature1, scientists show that, although originating from different cell types, human limbs and median fins share a common developmental mechanism. These results support the idea that it was from median fins that all fins and limbs evolved, a hypothesis that has been around since the 19 century, but, until now, has never been proved.

The earliest vertebrate fossils show only well-developed dorsal and ventral (median) fins what has led researchers to suspect that these were the basis for which all paired fins and limbs evolved. However, their different location (median versus side of the body) seemed to indicate that they appeared from different cells in the embryo, which challenged the common-origin idea.

In order to investigate the issue, Renata Freitas, a Portuguese scientist, together with Guang Jun Zhang and Martin J. Cohn, all working at the department of Zoology, University of Florida, studied the embryonic development of Catshark’s fins. Catsharks are sharks found in the Atlantic and owe their name to their flat heads and long, catlike eyes.

The researchers started by marking the different cells from the embryo and following their development, in order to understand which cells originated the different parts of the shark’s body. Next, they investigated the activity of different genes during fin development. From these two experiments, Freitas and colleagues discovered that the median fin of Catsharks, although originating from different embryonic cells, uses the same genes (Hox and Tbx18) during development as limbs and paired fins.

“Given that paired fins made their evolutionary debut at a particular location on the sides of the body, intuitively one would think the genetic tools for fin development would be brought together in that place,” said developmental biologist Martin Cohn, an associate professor with the University of Florida (UF) departments of zoology and anatomy and cell biology and a member of the UF Genetics Institute. “We’ve discovered that the genetic circuitry for building limbs first appeared in an entirely different place — the midline of the animal.”

To further confirm this hypothesis, Freitas, G Zhang and Cohn decided to study lampreys, which developed into an independent lineage before the appearance of the first modern fish (and so before the appearance of paired fins). Again, they found that lamprey’s median fin used the same developmental program as catshark’s median fins or human limbs.

“That we see these same mechanisms operating in lamprey fins tells us they must have been assembled in the median fins first, and later in evolution this entire genetic program was simply reutilized in a new position to build the first paired fins,” Cohn said. “It tells us our own arms and legs have their evolutionary roots in the dorsal, caudal and anal fins of our fishy ancestors.”

Furthermore, the fact that lampreys – one of the most primitive of living vertebrates- already use this fin’s developmental mechanism raises the possibility that this genetic program might have developed even before vertebrates. To investigate that, the researchers now plan to see if cephalocordates, which have appeared before the vertebrates, share a similar genetic mechanism behind the development of their fins.

Catarina Amorim | alfa
Further information:
http://www.oct.mct.pt

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>