Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What do a shark fin and a human leg have in common?

01.08.2006
One of the most important milestones in the evolution of life occurred when paired fins (and later limbs) appeared, leading to new types of locomotion.

Now, in the advanced online issue of Nature1, scientists show that, although originating from different cell types, human limbs and median fins share a common developmental mechanism. These results support the idea that it was from median fins that all fins and limbs evolved, a hypothesis that has been around since the 19 century, but, until now, has never been proved.

The earliest vertebrate fossils show only well-developed dorsal and ventral (median) fins what has led researchers to suspect that these were the basis for which all paired fins and limbs evolved. However, their different location (median versus side of the body) seemed to indicate that they appeared from different cells in the embryo, which challenged the common-origin idea.

In order to investigate the issue, Renata Freitas, a Portuguese scientist, together with Guang Jun Zhang and Martin J. Cohn, all working at the department of Zoology, University of Florida, studied the embryonic development of Catshark’s fins. Catsharks are sharks found in the Atlantic and owe their name to their flat heads and long, catlike eyes.

The researchers started by marking the different cells from the embryo and following their development, in order to understand which cells originated the different parts of the shark’s body. Next, they investigated the activity of different genes during fin development. From these two experiments, Freitas and colleagues discovered that the median fin of Catsharks, although originating from different embryonic cells, uses the same genes (Hox and Tbx18) during development as limbs and paired fins.

“Given that paired fins made their evolutionary debut at a particular location on the sides of the body, intuitively one would think the genetic tools for fin development would be brought together in that place,” said developmental biologist Martin Cohn, an associate professor with the University of Florida (UF) departments of zoology and anatomy and cell biology and a member of the UF Genetics Institute. “We’ve discovered that the genetic circuitry for building limbs first appeared in an entirely different place — the midline of the animal.”

To further confirm this hypothesis, Freitas, G Zhang and Cohn decided to study lampreys, which developed into an independent lineage before the appearance of the first modern fish (and so before the appearance of paired fins). Again, they found that lamprey’s median fin used the same developmental program as catshark’s median fins or human limbs.

“That we see these same mechanisms operating in lamprey fins tells us they must have been assembled in the median fins first, and later in evolution this entire genetic program was simply reutilized in a new position to build the first paired fins,” Cohn said. “It tells us our own arms and legs have their evolutionary roots in the dorsal, caudal and anal fins of our fishy ancestors.”

Furthermore, the fact that lampreys – one of the most primitive of living vertebrates- already use this fin’s developmental mechanism raises the possibility that this genetic program might have developed even before vertebrates. To investigate that, the researchers now plan to see if cephalocordates, which have appeared before the vertebrates, share a similar genetic mechanism behind the development of their fins.

Catarina Amorim | alfa
Further information:
http://www.oct.mct.pt

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>