Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Armour-plated fish and the evolution of dentists

08.01.2002


The discovery of small spikes lining the mouths of primitive fossil fish reveal surprising new details about how early animals fed. New research published today in a Royal Society paper sheds light on how teeth evolved.



Primitive fish did not have jaws or fins but were covered in rigid bony scales and resembled small armour-plated submarines. Dr Mark Purnell, a palaeontologist at the University of Leicester, has discovered that heterostracans, one of the most important groups of these early fish, had small spiky structures lining the inside edge of the mouth. These structures were made of hard dentine and were possibly the precursors of teeth as we know them today.

Only animals with backbones have true teeth, and the enamel and dentine of which they are made are the hardest materials in the body. ‘If you go looking for fossils of sharks, dinosaurs or any other vertebrate animal, you are more likely to find teeth than bones. Yet, surprisingly, mystery and uncertainty still surround the questions of when teeth first evolved and what they were used for,’ says Dr Purnell.


These new discoveries indicate that these early ‘teeth’ were not separated, individual structures but were modified from the armour plating that shielded the outside of the body. They had sharp points, cusps and ridges, but, unlike teeth, these points all faced forwards, and the fish could not have bitten or grabbed their food, or consumed anything but very small or soft items. This new evidence suggests that these early ‘teeth’ evolved not in a ferocious biting creature, but from the bony scales of a slime-slurping sucker.

Understanding how, when, and why animals first cut their teeth more than 400 million years ago is fundamental to understanding why the world around us is as it is. ‘Imagine a world without teeth – the history of life would certainly have taken a different course. Sharks would no longer be terrifying and dentists, more frightening to many people, would never have evolved,’ adds Dr Purnell.

Dr Mark Purnell | alphagalileo

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>