Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Proteins as Parents

Construction of proteins with new mechanical properties through recombination of protein fragments

So that we can move, and so that our heart beats, we need proteins with special mechanical properties, "molecular springs", which give our tissues the necessary strength and take care of elasticity and tensibility. Such proteins are also interesting as building blocks for novel high-tech materials because the natural materials often outperform the artificial: One only has to think about the highly elastic and extremely tear-proof spider dragline silk.

Molecules with defined mechanical properties are especially needed for the assembly of nanotechnological devices. A team from the University of British Columbia (Vancouver, Canada) succeeded in producing proteins with new mechanical properties through the combination of two "parent" protein fragments.

The research group of Hongbin Li chose two different titin domains from heart muscle for their experiments. Titin, a giant molecule, is responsible for controlling the passive tension of our muscles and also pulls them together again after an extension. Depending on the type of muscle, there are differences: The titin found in heart muscle is less tensile than that found in skeletal muscle and it gives the heart the necessary stability to resist the pressure of the inflowing blood.

As the parent generation, the scientists chose two globular titin domains called I27 and I32, whose mechanical properties have already been intensively researched. Both are similarly built and are composed of the protein segments A, A’, as well as B to G. The researchers interchanged several fragments of the genes that encode I27 and I32 ("DNA shuffling"). Genetically they produced four different protein "children": an I27 with the A’/G strands from I32, an I32 with A’/G from I27, an I27 with C, D, and E from I32, and also an I32 with the C, D, and E strands from I27.

The mechanical properties of all the proteins were investigated with atomic force microscopy. To do this, one end of the protein chain was attached onto a solid support and the other end was adsorbed onto the tip of the atomic force microscope. When the tip is gradually pulled away from the support, the protein elongates and the force increases until the protein finally unfolds. The resultant force–extension curves characterize the mechanical properties of the proteins. It turned out that all children show different mechanical characteristics to their parents. It was previously thought that the specific arrangement of the A’/G section was critical for the mechanical stability of the domain, whereas other parts of the domain, including the C, D, and E strands, only played a less- significant role. This opinion must now be revised.

Li hopes that this exciting new application of the powerful recombination technique in the field of protein mechanics will open a new way to tailor proteins’ mechanical properties.

Author: Hongbin Li, University of British Columbia, Vancouver (Canada),

Title: Engineering Proteins with Novel Mechanical Properties by Recombination of Protein Fragments

Angewandte Chemie International Edition 2006, 45, No. 34, doi: 10.1002/anie.200600382

Hongbin Li | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>