Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flick of a protein switches immune response

31.07.2006
USC-Harvard finding opens new door into research on autoimmune diseases

A single protein can turn on and off a key component of the immune system by changing partners in an elegant genomic dance, said researchers at the University of Southern California and Harvard Medical School.

Because autoimmune diseases – such as arthritis, allergies and dozens of other illnesses – begin when the body's defenses respond at the wrong time or place, the on-off mechanism for the immune system has been the subject of intense study for decades.

The USC-Harvard team studied proteins critical to immune tolerance, a term for the healthy balance between a weak immune system and an overly aggressive, indiscriminate watchdog.

Lin Chen, professor of molecular and computational biology at USC and lead co-author with Harvard's Anjana Rao, said the team's result would "open a big door for people to explain the fundamental mechanism of immune tolerance."

In the July 28 issue of Cell, the USC-Harvard group shows that the protein Nuclear Factor of Activated T cells (NFAT), in collaboration with FOXP3, an essential factor in regulatory T cells, orchestrates a genetic program critical to immune tolerance.

But the same NFAT, paired with a second family of proteins known as AP-1, instead stimulates immune response.

Chen said the finding offers the first strong evidence in favor of the 15-year-old "combinatorial control" theory of gene expression.

According to the theory, the specific expression of a gene depends on the combination of "transcription factors" acting on it. Transcription factors help to translate a gene's instructions into actual proteins. FOXP3 and NFAT are two such factors; the human body contains around 3,000.

"The work provides a structural demonstration of combinatorial control of gene expression," Chen said. "This is, in my view, the most direct demonstration that this is indeed happening in nature."

The researchers were able to identify single genes that were activated by NFAT in combination with AP-1 and suppressed by NFAT with FOXP3.

Beyond shedding light on the immune system, the Cell paper may advance biology and medicine toward a much larger goal: how to turn single genes on or off.

"This [result] has far-reaching implications for understanding the principles of signal transduction and transcriptional networks of living cells," Chen said.

The Cell paper, which Chen describes as spanning 14 years of laboratory work, builds on a result his group published in Nature in 1998.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>