Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers calculate how much the eye tells the brain

31.07.2006
Researchers at the University of Pennsylvania School of Medicine estimate that the human retina can transmit visual input at about the same rate as an Ethernet connection, one of the most common local area network systems used today. They present their findings in the July issue of Current Biology.

This line of scientific questioning points to ways in which neural systems compare to artificial ones, and can ultimately inform the design of artificial visual systems.

Much research on the basic science of vision asks what types of information the brain receives; this study instead asked how much. Using an intact retina from a guinea pig, the researchers recorded spikes of electrical impulses from ganglion cells using a miniature multi-electrode array. The investigators calculate that the human retina can transmit data at roughly 10 million bits per second. By comparison, an Ethernet can transmit information between computers at speeds of 10 to 100 million bits per second.

The retina is actually a piece of the brain that has grown into the eye and processes neural signals when it detects light. Ganglion cells carry information from the retina to the higher brain centers; other nerve cells within the retina perform the first stages of analysis of the visual world. The axons of the retinal ganglion cells, with the support of other types of cells, form the optic nerve and carry these signals to the brain.

Investigators have known for decades that there are 10 to 15 ganglion cell types in the retina that are adapted for picking up different movements and then work together to send a full picture to the brain. The study estimated the amount of information that is carried to the brain by seven of these ganglion cell types.

The guinea pig retina was placed in a dish and then presented with movies containing four types of biological motion, for example a salamander swimming in a tank to represent an object-motion stimulus. After recording electrical spikes on an array of electrodes, the researchers classified each cell into one of two broad classes: "brisk" or "sluggish," so named because of their speed.

The researchers found that the electrical spike patterns differed between cell types. For example, the larger, brisk cells fired many spikes per second and their response was highly reproducible. In contrast, the smaller, sluggish cells fired fewer spikes per second and their responses were less reproducible.

But, what's the relationship between these spikes and information being sent? "It's the combinations and patterns of spikes that are sending the information. The patterns have various meanings," says co-author Vijay Balasubramanian, PhD, Professor of Physics at Penn. "We quantify the patterns and work out how much information they convey, measured in bits per second."

Calculating the proportions of each cell type in the retina, the team estimated that about 100,000 guinea pig ganglion cells transmit about 875,000 bits of information per second. Because sluggish cells are more numerous, they account for most of the information. With about 1,000,000 ganglion cells, the human retina would transmit data at roughly the rate of an Ethernet connection, or 10 million bits per second.

"Spikes are metabolically expensive to produce," says lead author Kristin Koch, a PhD student in the lab of senior author Peter Sterling, PhD, Professor of Neuroscience. "Our findings hint that sluggish cells might be 'cheaper,' metabolically speaking, because they send more information per spike. If a message must be sent at a high rate, the brain uses the brisk channels. But if a message can afford to be sent more slowly, the brain uses the sluggish channels and pays a lower metabolic cost."

"In terms of sending visual information to the brain, these brisk cells are the Fedex of the optic system, versus the sluggish cells, which are the equivalent of the U.S. mail," notes Sterling. "Sluggish cells have not been studied that closely until now. The amazing thing is that when it's all said and done, the sluggish cells turned out to be the most important in terms of the amount of information sent."

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>