Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neural bases for language existed already 25-30 million years ago in an ancestral of human and non-human primates

31.07.2006
The origin of the brain mechanisms involved in human language is a much debated subject, especially whether these mechanisms appeared independently in humans or were already present in a common ancestor of human and non-human primates.

But now, research just published in the advanced online issue of Nature Neuroscience 1, found that Rhesus macaques when listening to other monkeys’ calls activate brain areas equivalent to the ones used for language in humans supporting the hypothesis that the neural basis for language existed already in a common ancestral. The discovery is a major step in understanding better language origins and evolution.

The acquisition of language is one of the most important adaptations during human evolution. Language created new human interactions and allowed ideas to bridge time and space. Among humans, babies as young as four weeks can respond to about 40 consonants, as differences in their sucking and heartbeats rates show. This ability seems to be innate, as babies from English-speaking parents react to consonants in Japanese that not exist in the English language. By the age of six, when the child enters school, the ability to react to sounds to which he/she has not been exposed in their own language is severely reduced, probably because at this point brain development rate decreases, and that is also why, after this age, it is so much more difficult to learn a second language.

Two main language centres have been identified in the human brain: Broca’s area, in the frontal lobe and Wernicke’s area, posteriorly. Both areas are found within a larger surface called the Perisylvian region, believed to be associated with language comprehension and production.

Although monkeys do not possess language, they do have an extended repertoire of sounds that have specific functions such as alerting to the presence of predators and marking various social interactions or emotional states. Interestingly, they have been shown to have regions in the brain similar to the Perisylvian area, although until now their functional significance was unknown, as was their link to the equivalent human region.

Trying to understand if these regions in the monkey were at all functionally correspondent to their human counterpart, Ricardo Gil-da-Costa, Allen R. Braun and colleagues from Portugal, the US and the UK decided to analyse the brain activity of Rhesus monkeys while listening (and recognising) other monkeys’ calls.

To this end, the researchers used an imaging technique called positron emission tomography (PET), which measures the functioning of distinct areas of the human brain with the individual still conscious and alert.

The technique consists of injecting radioactive isotopes (which are biologically safe and similar to the ones used in many exams performed in humans) into the bloodstream of the monkeys and then taking several PET images to trace the isotopes within the body. The logic is that when a task is performed and a specific brain region is activated, blood (and isotopes) rushes into this area in bigger quantities, identifying in this way the region involved in the task.

Several images were taken from animals listening to coos and screams of other rhesus monkeys, but also, as controls, to non-biological sounds, such as musical instruments and computer-synthesized noise. All these sounds were matched to have the same frequency, rate, scale, and duration as the sounds from the macaques, to assure that the results observed were a response to the calls’ meaning and not just to a particular noise.

What Gil-da-Costa, Martin, Braun and colleagues found, was that the monkeys’ brain areas homologues to the Perisylvian region in humans, were found to be significantly more activated while listening to other monkeys’ calls than to control sounds. This suggests that the most recent ancestor of human and non-human primates, that lived 25-30 million years ago, already had the neural substrate that later led, through different evolutionary processes, to the appearance of language in humans and the basic specific-meaning vocalisation found in monkeys.

“This intriguing finding brings us closer to understanding the point at which the building blocks of language appeared on the evolutionary timeline” - says James F. Battey, director of National Institute on Deafness and Other Communication Disorders in Pennsylvania - “while the fossil record cannot answer this question for us, we can turn to the here and now — through brain imaging of living non-human primates — for a glimpse into how language, or at least the neural circuitry required for language, came to be.”

Furthermore, the researchers have previously found that listening to vocalisations by other monkeys also activated brain areas associated, in humans, with the visual and emotional memories of objects.

This is extremely interesting as this result, together with the new study now published, suggests that not only monkeys and humans share a common neural basis to understand socially relevant information from vocalisations within the species, but also that language seems to come from a much broader neurological network, probably found in the Perisylvian area, which is involved in the extraction of meaning from socially relevant situations.

Catarina Amorim | alfa
Further information:
http://www.nature.com/neuro/journal/v9/n8/abs/nn1741.html

More articles from Life Sciences:

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

nachricht Calcium may play a role in the development of Parkinson's disease
19.02.2018 | University of Cambridge

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>