Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EPFL launches Protein Expression Core Facility

28.07.2006
EPFL is adding an exciting new dimension to the life science research capabilities in the Lake Geneva area and around Switzerland with the launching of a Protein Expression Core Facility. This facility, founded and directed by Professor Florian Wurm and located in EPFL’s Laboratory of Cellular Biotechnology, will provide recombinant proteins efficiently and at minimal cost to scientists doing basic research both within and outside Switzerland.

Producing proteins is a time-consuming, painstaking process, particularly from mammalian cell lines, and the investment required in terms of time, expertise, cost and infrastructure prevents most researchers from taking on the task in their own laboratories. Obtaining proteins from commercial sources is prohibitively expensive for scientists on tight budgets.

“Having this service close at hand has been fantastic for my research,” says EPFL researcher Patrick Fraering. “In my field [neurodegenerative disease] developments move very quickly. In order to stay competitive internationally, I need quick access to proteins from mammalian cell lines, and there is no way I could produce them with this level of efficiency myself.”

Building on the demonstrated benefits of the facility to EPFL researchers, the School of Life Sciences decided to formalize the facility and extend the service to scientists doing basic research outside EPFL. This will allow the Facility to recoup some costs and has the added benefit of stimulating collaborations and cross-institutional exchange. It’s cost-effective for users, because even though they will be charged a fee for the proteins, it’s far below what they would pay for commercial proteins and roughly a quarter of what it would cost them to produce the proteins themselves. And with a tight turnaround time – the facility can produce proteins from mammalian cells in less than four weeks – researchers can quickly follow up on promising leads. Once the development of a protein reaches a clinical or commercial stage, production will be transferred to a commercial facility.

The facility also provides training in gene transfer techniques and cultivation of cells in suspension. As facility manager David Hacker points out, “by offering guidance and training, we can enhance the chance that researchers’ projects will succeed.”

Recombinant proteins - From a Swiss past to a Swiss future?

In 1978, Swiss scientist Werner Arber shared the Nobel prize in medicine with Americans Daniel Nathans and Hamilton Smith for discovering a technique to incorporate non-native DNA into living cells. The re-combined, or “recombinant”, DNA holds instructions for the cell to produce the non-native protein which can subsequently be extracted and purified.

The 25,000 genes that make up human genome hold the blueprints for the manufacture of anywhere from 250,000 - 1 million proteins. But only about 50 of these proteins are understood well enough to be used in therapeutic applications. Insulin, EPO, and herceptin, an antibody used in breast cancer treatment, are a few better-known examples.

The global market for antibodies, proteins, and hormones produced using the recombinant DNA technique is currently on the order of $20 billion. Global demand for insulin is expected to rise by 14% annually. Most biomedical researchers agree that the therapeutic and market potential of recombinant proteins is not even close to being fully exploited. “It’s very important that we take advantage of the opportunities available in recombinant proteins,” notes Wurm. “A lack of opportunity for exploring this potential will diminish the European contribution to biomedical research considerably, and we’re likely to get left behind in the market as well.”

“If we want to jump-start biomedical research on proteins in Europe, the path from idea to innovation needs to be optimized,” urges Wurm. “With this facility, EPFL is in a key position to help make this happen.”

Mary Parlange | alfa
Further information:
http://actualites.epfl.ch/presseinfo-com?id=370

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>