Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EPFL launches Protein Expression Core Facility

28.07.2006
EPFL is adding an exciting new dimension to the life science research capabilities in the Lake Geneva area and around Switzerland with the launching of a Protein Expression Core Facility. This facility, founded and directed by Professor Florian Wurm and located in EPFL’s Laboratory of Cellular Biotechnology, will provide recombinant proteins efficiently and at minimal cost to scientists doing basic research both within and outside Switzerland.

Producing proteins is a time-consuming, painstaking process, particularly from mammalian cell lines, and the investment required in terms of time, expertise, cost and infrastructure prevents most researchers from taking on the task in their own laboratories. Obtaining proteins from commercial sources is prohibitively expensive for scientists on tight budgets.

“Having this service close at hand has been fantastic for my research,” says EPFL researcher Patrick Fraering. “In my field [neurodegenerative disease] developments move very quickly. In order to stay competitive internationally, I need quick access to proteins from mammalian cell lines, and there is no way I could produce them with this level of efficiency myself.”

Building on the demonstrated benefits of the facility to EPFL researchers, the School of Life Sciences decided to formalize the facility and extend the service to scientists doing basic research outside EPFL. This will allow the Facility to recoup some costs and has the added benefit of stimulating collaborations and cross-institutional exchange. It’s cost-effective for users, because even though they will be charged a fee for the proteins, it’s far below what they would pay for commercial proteins and roughly a quarter of what it would cost them to produce the proteins themselves. And with a tight turnaround time – the facility can produce proteins from mammalian cells in less than four weeks – researchers can quickly follow up on promising leads. Once the development of a protein reaches a clinical or commercial stage, production will be transferred to a commercial facility.

The facility also provides training in gene transfer techniques and cultivation of cells in suspension. As facility manager David Hacker points out, “by offering guidance and training, we can enhance the chance that researchers’ projects will succeed.”

Recombinant proteins - From a Swiss past to a Swiss future?

In 1978, Swiss scientist Werner Arber shared the Nobel prize in medicine with Americans Daniel Nathans and Hamilton Smith for discovering a technique to incorporate non-native DNA into living cells. The re-combined, or “recombinant”, DNA holds instructions for the cell to produce the non-native protein which can subsequently be extracted and purified.

The 25,000 genes that make up human genome hold the blueprints for the manufacture of anywhere from 250,000 - 1 million proteins. But only about 50 of these proteins are understood well enough to be used in therapeutic applications. Insulin, EPO, and herceptin, an antibody used in breast cancer treatment, are a few better-known examples.

The global market for antibodies, proteins, and hormones produced using the recombinant DNA technique is currently on the order of $20 billion. Global demand for insulin is expected to rise by 14% annually. Most biomedical researchers agree that the therapeutic and market potential of recombinant proteins is not even close to being fully exploited. “It’s very important that we take advantage of the opportunities available in recombinant proteins,” notes Wurm. “A lack of opportunity for exploring this potential will diminish the European contribution to biomedical research considerably, and we’re likely to get left behind in the market as well.”

“If we want to jump-start biomedical research on proteins in Europe, the path from idea to innovation needs to be optimized,” urges Wurm. “With this facility, EPFL is in a key position to help make this happen.”

Mary Parlange | alfa
Further information:
http://actualites.epfl.ch/presseinfo-com?id=370

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>