Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EPFL launches Protein Expression Core Facility

28.07.2006
EPFL is adding an exciting new dimension to the life science research capabilities in the Lake Geneva area and around Switzerland with the launching of a Protein Expression Core Facility. This facility, founded and directed by Professor Florian Wurm and located in EPFL’s Laboratory of Cellular Biotechnology, will provide recombinant proteins efficiently and at minimal cost to scientists doing basic research both within and outside Switzerland.

Producing proteins is a time-consuming, painstaking process, particularly from mammalian cell lines, and the investment required in terms of time, expertise, cost and infrastructure prevents most researchers from taking on the task in their own laboratories. Obtaining proteins from commercial sources is prohibitively expensive for scientists on tight budgets.

“Having this service close at hand has been fantastic for my research,” says EPFL researcher Patrick Fraering. “In my field [neurodegenerative disease] developments move very quickly. In order to stay competitive internationally, I need quick access to proteins from mammalian cell lines, and there is no way I could produce them with this level of efficiency myself.”

Building on the demonstrated benefits of the facility to EPFL researchers, the School of Life Sciences decided to formalize the facility and extend the service to scientists doing basic research outside EPFL. This will allow the Facility to recoup some costs and has the added benefit of stimulating collaborations and cross-institutional exchange. It’s cost-effective for users, because even though they will be charged a fee for the proteins, it’s far below what they would pay for commercial proteins and roughly a quarter of what it would cost them to produce the proteins themselves. And with a tight turnaround time – the facility can produce proteins from mammalian cells in less than four weeks – researchers can quickly follow up on promising leads. Once the development of a protein reaches a clinical or commercial stage, production will be transferred to a commercial facility.

The facility also provides training in gene transfer techniques and cultivation of cells in suspension. As facility manager David Hacker points out, “by offering guidance and training, we can enhance the chance that researchers’ projects will succeed.”

Recombinant proteins - From a Swiss past to a Swiss future?

In 1978, Swiss scientist Werner Arber shared the Nobel prize in medicine with Americans Daniel Nathans and Hamilton Smith for discovering a technique to incorporate non-native DNA into living cells. The re-combined, or “recombinant”, DNA holds instructions for the cell to produce the non-native protein which can subsequently be extracted and purified.

The 25,000 genes that make up human genome hold the blueprints for the manufacture of anywhere from 250,000 - 1 million proteins. But only about 50 of these proteins are understood well enough to be used in therapeutic applications. Insulin, EPO, and herceptin, an antibody used in breast cancer treatment, are a few better-known examples.

The global market for antibodies, proteins, and hormones produced using the recombinant DNA technique is currently on the order of $20 billion. Global demand for insulin is expected to rise by 14% annually. Most biomedical researchers agree that the therapeutic and market potential of recombinant proteins is not even close to being fully exploited. “It’s very important that we take advantage of the opportunities available in recombinant proteins,” notes Wurm. “A lack of opportunity for exploring this potential will diminish the European contribution to biomedical research considerably, and we’re likely to get left behind in the market as well.”

“If we want to jump-start biomedical research on proteins in Europe, the path from idea to innovation needs to be optimized,” urges Wurm. “With this facility, EPFL is in a key position to help make this happen.”

Mary Parlange | alfa
Further information:
http://actualites.epfl.ch/presseinfo-com?id=370

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>