Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EPFL launches Protein Expression Core Facility

28.07.2006
EPFL is adding an exciting new dimension to the life science research capabilities in the Lake Geneva area and around Switzerland with the launching of a Protein Expression Core Facility. This facility, founded and directed by Professor Florian Wurm and located in EPFL’s Laboratory of Cellular Biotechnology, will provide recombinant proteins efficiently and at minimal cost to scientists doing basic research both within and outside Switzerland.

Producing proteins is a time-consuming, painstaking process, particularly from mammalian cell lines, and the investment required in terms of time, expertise, cost and infrastructure prevents most researchers from taking on the task in their own laboratories. Obtaining proteins from commercial sources is prohibitively expensive for scientists on tight budgets.

“Having this service close at hand has been fantastic for my research,” says EPFL researcher Patrick Fraering. “In my field [neurodegenerative disease] developments move very quickly. In order to stay competitive internationally, I need quick access to proteins from mammalian cell lines, and there is no way I could produce them with this level of efficiency myself.”

Building on the demonstrated benefits of the facility to EPFL researchers, the School of Life Sciences decided to formalize the facility and extend the service to scientists doing basic research outside EPFL. This will allow the Facility to recoup some costs and has the added benefit of stimulating collaborations and cross-institutional exchange. It’s cost-effective for users, because even though they will be charged a fee for the proteins, it’s far below what they would pay for commercial proteins and roughly a quarter of what it would cost them to produce the proteins themselves. And with a tight turnaround time – the facility can produce proteins from mammalian cells in less than four weeks – researchers can quickly follow up on promising leads. Once the development of a protein reaches a clinical or commercial stage, production will be transferred to a commercial facility.

The facility also provides training in gene transfer techniques and cultivation of cells in suspension. As facility manager David Hacker points out, “by offering guidance and training, we can enhance the chance that researchers’ projects will succeed.”

Recombinant proteins - From a Swiss past to a Swiss future?

In 1978, Swiss scientist Werner Arber shared the Nobel prize in medicine with Americans Daniel Nathans and Hamilton Smith for discovering a technique to incorporate non-native DNA into living cells. The re-combined, or “recombinant”, DNA holds instructions for the cell to produce the non-native protein which can subsequently be extracted and purified.

The 25,000 genes that make up human genome hold the blueprints for the manufacture of anywhere from 250,000 - 1 million proteins. But only about 50 of these proteins are understood well enough to be used in therapeutic applications. Insulin, EPO, and herceptin, an antibody used in breast cancer treatment, are a few better-known examples.

The global market for antibodies, proteins, and hormones produced using the recombinant DNA technique is currently on the order of $20 billion. Global demand for insulin is expected to rise by 14% annually. Most biomedical researchers agree that the therapeutic and market potential of recombinant proteins is not even close to being fully exploited. “It’s very important that we take advantage of the opportunities available in recombinant proteins,” notes Wurm. “A lack of opportunity for exploring this potential will diminish the European contribution to biomedical research considerably, and we’re likely to get left behind in the market as well.”

“If we want to jump-start biomedical research on proteins in Europe, the path from idea to innovation needs to be optimized,” urges Wurm. “With this facility, EPFL is in a key position to help make this happen.”

Mary Parlange | alfa
Further information:
http://actualites.epfl.ch/presseinfo-com?id=370

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>