Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How can identical twins be genetically different?

27.07.2006
U-M scientists find new genes linked to rheumatoid arthritis that are expressed differently in genetically identical twins

They sleep together, eat together, and most people find it impossible to tell them apart. Identical twins who grow up together share just about everything, including their genes. But sometimes only one twin will have health problems when genetics predicts both of them should.

Scientists at the University of Michigan Medical School are just beginning to understand how two people who are so similar biologically can be so different when it comes to the development of diseases like rheumatoid arthritis.

U-M researchers have discovered three genes that are over-expressed in rheumatoid arthritis, or RA, that were not known to be associated with the disease before. They also found that non-genetic factors influenced the expression of these genes and that the expression patterns varied between identical twins where only one twin had RA. Results of the U-M study were published in the July issue of Arthritis and Rheumatism.

RA is a chronic inflammatory disease that damages joints. RA causes pain, loss of movement, and bone deformities. It affects 2.1 million Americans. There are many genetic factors that put people at a high-risk for developing RA, yet only 15 percent of identical twins will both develop it.

Scientists compared gene expression patterns of 11 pairs of monozygotic twins, who shared the same egg and were genetically identical, but only one of them had RA. They found three new genes that were significantly over-expressed in the twin with RA compared to the one without the disease. This is the first report for RA that examines gene expression patterns in monozygotic twins.

"This is the crux of the issue we are trying to address in RA -- how two patients can have the same genes but different disease outcomes. Identical twins represent the best experimental system to address this question," says Joseph Holoshitz, M.D., an associate professor of internal medicine at U-M Medical School and co-author of the study.

The advantage of studying twins is that they start out with the exact same genetic information. Therefore, differences in gene expression are attributable to different environmental factors rather than genetics. Such factors could cause a random genetic mutation or affects how DNA is packaged.

"There's a lot of variability in the severity of the disease, symptoms, and the response a patient will have to treatment. Differences in the expression of genes caused by environmental factors that modify DNA have a lot to do with this variability," says Holoshitz.

The most significantly over-expressed of the three genes codes for a protein called laeverin. This is an enzyme that destroys certain types of proteins. Scientists hypothesize that laeverin promotes the tissue damage of the joint found in RA by degrading cartilage and bone.

Another previously unidentified gene codes for a protein called 11â-HSD2 that helps deactivate the hormone cortisol. This hormone is involved in the response to stress and also has anti-inflammatory effects. The discovery that 11â-HSD2 is over-expressed in patients may explain a common characteristic of RA patients.

"It has been known for a long time that there is a deficiency of cortisol in RA patients," says Holoshitz.

The third gene U-M scientists discovered codes for Cyr61, which plays a role in angiogenesis, a process that recruits new blood vessels to an area.

In the early stages of RA, the tissue in the joint begins to grow and divide similarly to a benign tumor. The growing mass, which secretes proteins that degrade tissue, uses angiogenesis to recruit new blood vessels to supply it with nutrients. The angiogenic factor Cyr61 could be involved with this process.

"This paper describes only a glimpse of what this approach might reveal. There are many other categories of genes where expression varies between twins. We are just beginning to understand how RA is able to affect people in different ways. The newly discovered genes provide important insights into the nature of the disease and facilitate the design of novel treatment strategies for RA," says Holoshitz.

Rossitza Iordanova | EurekAlert!
Further information:
http://www.med.umich.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>