Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein researchers find 'key' to unlocking world's deadliest malaria parasite

27.07.2006
Researchers at the Albert Einstein College of Medicine of Yeshiva University have leveraged the results of their research into tuberculosis to craft a tool for unlocking the secrets of another of the world’s leading infectious killers—malaria.

These findings, published in the August issue of Nature Methods, “should substantially speed up research efforts to bring malaria under control,” says Dr. David Fidock, senior author of the paper and an associate professor of microbiology & immunology at Einstein.

Malaria is caused by a single-celled parasite, Plasmodium, which is transmitted through the bite of the Anopheles mosquito. The disease kills an estimated 1.2 million people every year.

The Einstein scientists focused on the most deadly Plasmodium strain—P. falciparum—which is proving increasingly resistant to treatment. Their research has led to the first efficient technique for inserting any gene of interest into the P. falciparum genome to gain biological information that could lead to more effective treatments.

“This opens up a whole new window into the genetic manipulation of this lethal parasite,” says Dr. William Jacobs, Jr., who is a Howard Hughes investigator and professor of molecular genetics and microbiology & immunology at Einstein and a major author of the Nature Methods paper. “Malaria researchers finally have an efficient way to shuffle genes into P. falciparum, which should lead to valuable information about the parasite’s virulence, how it’s transmitted from mosquito to humans and how it develops resistance to antimalarial drugs.”

The research effort was conducted primarily by Louis Nkrumah, an MD/PhD student at Einstein. Central to this effort was a bacterial phage (virus) that Dr. Jacobs isolated from soil in his backyard in the Bronx and dubbed the “Bronx Bomber.” It infects Mycobacterium smegmatis, a bacterial species closely related to Mycobacterium tuberculosis, which causes tuberculosis. Dr. Jacobs has used the Bronx Bomber to gain important knowledge about tuberculosis bacteria.

Bacterial phages are adept at integrating their genes into the DNA of their bacterial hosts. Phages typically rely on host proteins for gene integration. But the Bronx Bomber does the job all by itself, using one of its own enzymes. Dr. Jacobs realized that this unique property of his tuberculosis virus could be used for “breaking into” other microbial species—in particular P. falciparum, which has proven notoriously resistant to attempts to develop efficient methods of genetic manipulation.

Einstein researchers wanted to see if they could use the Bronx Bomber’s enzyme to introduce any gene of interest into P. falciparum. So they fashioned a plasmid (circular loop of DNA) containing several elements: the gene for the Bronx Bomber enzyme; a section of DNA that would bind the plasmid to a complementary section of DNA inside P. falciparum; and a marker gene fused with a green fluorescent protein that would light up if the marker gene became functional.

The Bronx Bomber transfection technique proved remarkably successful. “Using standard methods of gene manipulation, we wouldn’t know for four or five months whether we had successfully achieved a stable recombinant organism—and many experiments failed,” says Dr. Fidock. “But with this technique, recombinant parasites are typically produced within two to four weeks, and their identification and characterization has become far more streamlined. This method should significantly benefit genetic strategies for exploring the biology of this parasite.”

The other Einstein researchers involved in this study were Rebecca A. Muhle and Pedro A. Moura. Their collaborators, from the University of Pittsburgh, were Pallavi Ghosh and Graham F. Hatfull.

Karen Gardner | EurekAlert!
Further information:
http://www.aecom.yu.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>