Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unusual mechanism keeps repair protein accurate

26.07.2006
Cancer researchers have discovered that a recently identified protein critical for repairing damaged genes uses an unusual mechanism to keep its repairs accurate.

The protein, called DNA polymerase lambda, is one of a group of proteins known as DNA polymerases that are vital for accurately making and repairing DNA.

But while other DNA-repair proteins insure their accuracy with the help of so-called proof-reading regions or accessory molecules, this protein maintains its accuracy using an otherwise ordinary-looking portion of its molecular structure.

The study was led by Zucai Suo, assistant professor of biochemistry and a researcher with the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute. The research, published in the July 14 issue of The Journal of Biological Chemistry, provides new insights into how cells repair damaged DNA.

“DNA is constantly attacked and damaged by a variety of agents,” Suo says. “The body must properly repair that damage, or it can lead to cell death or to cancer, birth defects and other diseases.

“There are six families of DNA polymerases,” Suo says, “and this is the first polymerase to use this mechanism to maintain its accuracy when making new DNA. It is both surprising and unprecedented.”

The repair protein itself was first discovered by scientists studying DNA sequence data produced by the Human Genome Project. Suo and his colleagues then became interested in learning how the repair protein worked.

The protein has four distinct regions, or domains. Three of the regions had molecular structures that strongly suggest the task they performed.

For example, regions three and four closely resemble a well-known repair protein called DNA polymerase beta. In fact, it was this similarity that tipped off scientists that the new protein was probably involved in DNA repair.

Region one also had a predicted structure that should allow it to “dock” with other proteins. “This suggests that this protein may do more than just fix DNA damage,” Suo says.

Region two held the surprise. It is called the proline-rich domain because it has high levels of the amino acid proline.

“There was no known function for a structure like the proline-rich domain, so we at first thought it did nothing more than connect the docking region of the protein with regions three and four,” Suo says.

“Then by accident we learned that this was not just a structural connection, but that it is critical to the protein's ability to replicate DNA with very few mistakes.”

For this study, Suo and his colleagues wanted to learn how efficiently the new protein made new DNA. But the researchers initially considered the protein too large and difficult to produce in the laboratory. So instead of making the entire protein, the researchers made only the part that does the repair work, regions three and four.

When they tested this short version of the protein, however, they found that it made up to a 100 times more mistakes than did the similar repair protein, DNA polymerase beta.

“That error rate is too high,” Suo says. “If the entire repair protein produced that many errors, it would cause more problems than it would fix.”

Next, the researchers made the entire protein and found that it could repair DNA as accurately as the comparison protein.

Last, they tested a version of the protein that lacked the docking region. This shortened molecule also accurately made DNA.

“To find that the proline-rich domain was responsible for this repair protein's high fidelity came as a complete surprise,” Suo says.

Presently the scientists are studying the three-dimensional structure of the entire protein to learn how the presence of a proline-rich region influences the ability of the protein to accurately make DNA.

Funding from the National Institutes of Health Chemistry and Biology Interface Program and from the American Heart Association Predoctoral Fellowship program supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>