Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify which sets of molecules are required to induce T cells

26.07.2006
Critical discovery brings Toronto-based researchers closer to creating tailored T cell therapy for AIDS patients and those with other immune system deficiencies

Researchers at Sunnybrook Health Sciences Centre have made a critical discovery in T cell development bringing immunologists one step closer to enabling the creation of tailored T cell therapy that could one day be used to treat patients with AIDS or other immune system deficiencies.

"For the first time we understand which sets of molecules are required to induce different types of T cells," says Canada Research Chair and principal investigator Dr. Juan Carlos Zúñiga-Pflücker, a senior scientist at Sunnybrook Research Institute who is also a professor in the Department of Immunology at the University of Toronto.

The immune system uses two main types of T cells, alpha-beta and gamma-delta, each with unique roles in protecting us from disease. The findings show that T cell progenitors will develop into mature gamma-delta T cells despite the absence of the Notch molecule, a molecule that Zúñiga-Pflücker's lab recently showed was essential for the early-stage development of both types of T cells.

Published today in the journal Immunity, the research is also the first to show at what developmental stage the two types of T cells become distinct lineages. The lead researcher, Maria Ciofani, a PhD student in Zúñiga-Pflücker's lab, used precise cell isolation techniques to show which molecular cues are needed, and when for each lineage development. Collectively, the work clarifies how both T cell types can be generated in the laboratory, thereby enabling further study directed at tailoring their unique functions to specific clinical needs.

Gamma-delta T cells in particular hold exciting clinical promise for their ability to orchestrate immunity to a broad range of foreign molecules; experiments in mice have shown that gamma-delta T cell injections can eliminate cancerous tumours, although much work remains to translate this research into viable clinical therapy.

Zúñiga-Pflücker was recently identified by the prestigious Thomson Scientific Essential Science Indicators as one of the most cited researchers in the field of immunology for his landmark December 2002 paper in Immunity, which showed how to generate T cells from stem cells in a Petri dish. In addition to enabling Zúñiga-Pflücker's current work, this breakthrough discovery established a simple and effective way for other researchers to study T cell development, and has advanced this study in hundreds of labs around the world.

Jennifer White | EurekAlert!
Further information:
http://www.sunnybrook.ca

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>