Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify which sets of molecules are required to induce T cells

26.07.2006
Critical discovery brings Toronto-based researchers closer to creating tailored T cell therapy for AIDS patients and those with other immune system deficiencies

Researchers at Sunnybrook Health Sciences Centre have made a critical discovery in T cell development bringing immunologists one step closer to enabling the creation of tailored T cell therapy that could one day be used to treat patients with AIDS or other immune system deficiencies.

"For the first time we understand which sets of molecules are required to induce different types of T cells," says Canada Research Chair and principal investigator Dr. Juan Carlos Zúñiga-Pflücker, a senior scientist at Sunnybrook Research Institute who is also a professor in the Department of Immunology at the University of Toronto.

The immune system uses two main types of T cells, alpha-beta and gamma-delta, each with unique roles in protecting us from disease. The findings show that T cell progenitors will develop into mature gamma-delta T cells despite the absence of the Notch molecule, a molecule that Zúñiga-Pflücker's lab recently showed was essential for the early-stage development of both types of T cells.

Published today in the journal Immunity, the research is also the first to show at what developmental stage the two types of T cells become distinct lineages. The lead researcher, Maria Ciofani, a PhD student in Zúñiga-Pflücker's lab, used precise cell isolation techniques to show which molecular cues are needed, and when for each lineage development. Collectively, the work clarifies how both T cell types can be generated in the laboratory, thereby enabling further study directed at tailoring their unique functions to specific clinical needs.

Gamma-delta T cells in particular hold exciting clinical promise for their ability to orchestrate immunity to a broad range of foreign molecules; experiments in mice have shown that gamma-delta T cell injections can eliminate cancerous tumours, although much work remains to translate this research into viable clinical therapy.

Zúñiga-Pflücker was recently identified by the prestigious Thomson Scientific Essential Science Indicators as one of the most cited researchers in the field of immunology for his landmark December 2002 paper in Immunity, which showed how to generate T cells from stem cells in a Petri dish. In addition to enabling Zúñiga-Pflücker's current work, this breakthrough discovery established a simple and effective way for other researchers to study T cell development, and has advanced this study in hundreds of labs around the world.

Jennifer White | EurekAlert!
Further information:
http://www.sunnybrook.ca

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>