Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano Probe May Open New Window Into Cell Behavior

26.07.2006
Georgia Tech invention captures cell properties and biochemical signals in action

To create drugs capable of targeting some of the most devastating human diseases, scientists must first decode exactly how a cell or a group of cells communicates with other cells and reacts to a broad spectrum of complex biomolecules surrounding it.

But even the most sophisticated tools currently used for studying cell communications suffer from significant deficiencies. Typically, these tools can detect only a narrowly selected group of small molecules or, for a more sophisticated analysis, the cells must be destroyed for sample preparation. This makes it very difficult to observe complex cellular interactions just as they would occur in their natural habitat — the human body.

Georgia Tech researchers have created a nanoscale probe, the Scanning Mass Spectrometry (SMS) probe, that can capture both the biochemical makeup and topography of complex biological objects in their normal environment — opening the door for discovery of new biomarkers and improved gene studies, leading to better disease diagnosis and drug design on the cellular level. The research was presented in the July issue of IEE Electronics Letters.

The new instrument, a potentially very valuable tool for the emerging science of systems biology, may help researchers better understand cellular interactions at the most fundamental level, including cell signaling, as well as identifying protein expression and response to the external stimuli (e.g., exposure to drugs or changes in the environment) from the organ scale down to tissue and even the single cell level.

“At its core, disease is a disruption of normal cell signaling,” said Dr. Andrei Fedorov, a professor in Georgia Tech’s Woodruff School of Mechanical Engineering and lead researcher on the project. “So, if one understands the network and all signals on the most fundamental level, one would be able to control and correct them if needed. The SMS probe can help map all those complex and intricate cellular communication pathways by probing cell activities in the natural cellular environment.”

The SMS probe offers the capability to gently pull biomolecules (proteins, metabolites, peptides) precisely at a specific point on the cell/tissue surface, ionize these biomolecules and produce “dry” ions suitable for analysis and then transport those ions to the mass spectrometer (an instrument that can detect proteins present even in ultra-small concentrations by measuring the relative masses of ionized atoms and molecules) for identification. The probe does this dynamically (not statically), imaging the surface and mapping cellular activities and communication potentially in real time. In essence, in scanning mode, the SMS probe could create images similar to movies of cell biochemical activities with high spatial and temporal resolution.

The SMS probe can be readily integrated with the Atomic Force Microscope (AFM) or other scanning probes, and can not only image biochemical activity but also monitor the changes in the cell/tissue topology during the imaging.

“The probe potentially allows us to detect complex mechano-bio-electro-chemical events underlying cell communication, all at the same time!” Fedorov said. “The future work is in refinement of the idea and development of a versatile instrument that can be used by biological and medical scientists in advancing the frontiers of biomedical research.”

The key challenge for the Georgia Tech team, which includes Dr. Levent Degertekin, was to create a way for a mass spectrometer, the primary tool for studying proteins, to sample biomolecules from a small domain and do it dynamically, thus enabling biochemical imaging. The researchers had to find a way to pull the targeted molecules out of the sample, as if they were using virtual tweezers, and then transfer these molecules into a dry and electrically charged state suitable for mass spectrometric analysis.

The solution to the problem came from a trick related to the basic fluid mechanics of ionic fluids, as the researchers exploited strong capillary forces to confine fluid within a nanoscale domain of the probe inlet (enabling natural separation of liquid and gaseous environments) and then used the classical Taylor electrohydrodynamic focusing of the jets to produce charged ions, but in reverse (pull) rather than in a commonly-used forward (push) mode.

The Georgia Institute of Technology is one of the nation's premiere research universities. Ranked ninth among U.S. News & World Report's top public universities, Georgia Tech educates more than 17,000 students every year through its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech maintains a diverse campus and is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute. During the 2004-2005 academic year, Georgia Tech reached $357 million in new research award funding. The Institute also maintains an international presence with campuses in France and Singapore and partnerships throughout the world.

Megan McRainey | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Life Sciences:

nachricht Reptile vocalization is surprisingly flexible
30.05.2017 | Max-Planck-Institut für Ornithologie

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>