Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano Probe May Open New Window Into Cell Behavior

26.07.2006
Georgia Tech invention captures cell properties and biochemical signals in action

To create drugs capable of targeting some of the most devastating human diseases, scientists must first decode exactly how a cell or a group of cells communicates with other cells and reacts to a broad spectrum of complex biomolecules surrounding it.

But even the most sophisticated tools currently used for studying cell communications suffer from significant deficiencies. Typically, these tools can detect only a narrowly selected group of small molecules or, for a more sophisticated analysis, the cells must be destroyed for sample preparation. This makes it very difficult to observe complex cellular interactions just as they would occur in their natural habitat — the human body.

Georgia Tech researchers have created a nanoscale probe, the Scanning Mass Spectrometry (SMS) probe, that can capture both the biochemical makeup and topography of complex biological objects in their normal environment — opening the door for discovery of new biomarkers and improved gene studies, leading to better disease diagnosis and drug design on the cellular level. The research was presented in the July issue of IEE Electronics Letters.

The new instrument, a potentially very valuable tool for the emerging science of systems biology, may help researchers better understand cellular interactions at the most fundamental level, including cell signaling, as well as identifying protein expression and response to the external stimuli (e.g., exposure to drugs or changes in the environment) from the organ scale down to tissue and even the single cell level.

“At its core, disease is a disruption of normal cell signaling,” said Dr. Andrei Fedorov, a professor in Georgia Tech’s Woodruff School of Mechanical Engineering and lead researcher on the project. “So, if one understands the network and all signals on the most fundamental level, one would be able to control and correct them if needed. The SMS probe can help map all those complex and intricate cellular communication pathways by probing cell activities in the natural cellular environment.”

The SMS probe offers the capability to gently pull biomolecules (proteins, metabolites, peptides) precisely at a specific point on the cell/tissue surface, ionize these biomolecules and produce “dry” ions suitable for analysis and then transport those ions to the mass spectrometer (an instrument that can detect proteins present even in ultra-small concentrations by measuring the relative masses of ionized atoms and molecules) for identification. The probe does this dynamically (not statically), imaging the surface and mapping cellular activities and communication potentially in real time. In essence, in scanning mode, the SMS probe could create images similar to movies of cell biochemical activities with high spatial and temporal resolution.

The SMS probe can be readily integrated with the Atomic Force Microscope (AFM) or other scanning probes, and can not only image biochemical activity but also monitor the changes in the cell/tissue topology during the imaging.

“The probe potentially allows us to detect complex mechano-bio-electro-chemical events underlying cell communication, all at the same time!” Fedorov said. “The future work is in refinement of the idea and development of a versatile instrument that can be used by biological and medical scientists in advancing the frontiers of biomedical research.”

The key challenge for the Georgia Tech team, which includes Dr. Levent Degertekin, was to create a way for a mass spectrometer, the primary tool for studying proteins, to sample biomolecules from a small domain and do it dynamically, thus enabling biochemical imaging. The researchers had to find a way to pull the targeted molecules out of the sample, as if they were using virtual tweezers, and then transfer these molecules into a dry and electrically charged state suitable for mass spectrometric analysis.

The solution to the problem came from a trick related to the basic fluid mechanics of ionic fluids, as the researchers exploited strong capillary forces to confine fluid within a nanoscale domain of the probe inlet (enabling natural separation of liquid and gaseous environments) and then used the classical Taylor electrohydrodynamic focusing of the jets to produce charged ions, but in reverse (pull) rather than in a commonly-used forward (push) mode.

The Georgia Institute of Technology is one of the nation's premiere research universities. Ranked ninth among U.S. News & World Report's top public universities, Georgia Tech educates more than 17,000 students every year through its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech maintains a diverse campus and is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute. During the 2004-2005 academic year, Georgia Tech reached $357 million in new research award funding. The Institute also maintains an international presence with campuses in France and Singapore and partnerships throughout the world.

Megan McRainey | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>