Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When biology gets 'Quirky,' scientists turn to math

26.07.2006
Ohio State University researchers who are trying to solve a longstanding mystery in chemistry and biology are getting answers from a seemingly unusual source: mathematics.

Ultimately, the project could provide a tool for clinical research, because it could explain why cells sometimes react to medicines in unexpected ways.

A chemical such as a drug could function very well inside a cell most of the time, and then suddenly not work well at all, as if a switch had been flipped. For researchers who are trying to develop new biochemical agents, this means that results can vary widely from experiment to experiment.

Martin Feinberg and his colleagues wanted to know why.

Through computer simulations, they discovered that the answer -- mathematically, at least -- could come down to the rate at which chemicals enter a cell. The results of their simulations appear in a recent issue of the Proceedings of the National Academy of Sciences (PNAS).

Feinberg, the Richard M. Morrow Professor of chemical engineering and professor of mathematics at Ohio State, and Gheorghe Craciun, formerly of Ohio State's Mathematical Biosciences Institute, created visualizations of chemical reactions called species-reaction graphs ("species" are the different chemicals in a reaction). The graphs are maps of a sort, where lines and curves connect chemicals like roads connect destinations. Craciun is now an assistant professor of mathematics and biomolecular chemistry at the University of Wisconsin.

Based on the number of connections and how they overlap, Feinberg and Craciun can tell with a glance whether a reaction is predictable, or whether it might be what they call "quirky" -- prone to the switching behavior that occasionally produces strange results. They created a theorem that lays out mathematical rules that researchers can use to make the same judgment.

As it turns out, many of the graphs that describe biological reactions are quirky.

"Some of the graphs that come from classical biological reactions -- even simple ones -- indicate that these reactions might behave in very quirky ways," Feinberg said.

"This behavior may be essential to biology itself."

To test the theorem, he and his colleagues simulated a very simple chemical system on a computer: the behavior of a simplified biological cell containing an enzyme, DHFR (dihydrofolate reductase). DHFR is important in cell division because it helps provide an essential building block of DNA.

In fact, a classical chemotherapy agent, methotrexate, is used to thwart the operation of DHFR so that the out-of-control cell proliferation characteristic of cancer cannot take place.

Student Yangzhong Tang created the simulation software as part of her doctoral work. She described it as a simple computational tool which shows how rapidly DHFR converts reactants to products, depending on the rate at which reactants enter the cell. In particular, the software helps determine circumstances under which DHFR can operate in two very different conversion modes -- a rapid one and a slower one.

For the simulation, the researchers started with a low supply rate of reactants and then gradually increased the supply rate. At first, the DHFR converted reactants to products at 95 percent efficiency. Then, it abruptly dropped to 65 percent. When they decreased the flow rate, it just as abruptly returned to 95 percent.

"It was like a switch had been flipped, and the trigger was an increase or decrease of only 0.02 milliliters of reactant solution per minute," Feinberg said. "We were surprised to see that we could create such a dramatic switch just by changing the reactant supply rate a tiny amount.

"Keep in mind that this is in the absence of any methotrexate at all," he continued. "To understand what happens in the presence of the anti-cancer drug, one should be aware of the quirky phenomena that might be exhibited even when no methotrexate is present."

Seeing an unexpectedly low conversion efficiency of an enzyme during a laboratory experiment, scientists might erroneously conclude that there's something wrong with the enzyme or that the gene responsible for manufacturing the enzyme had gone awry. In fact, the real culprit might be a chemical switch, intrinsic to the mathematics, that is triggered by the reactant supply rate, Feinberg said.

The next step for the researchers is to try to observe this behavior in the laboratory. They are designing a plastic model cell with specialized filters so that they can carefully measure chemicals that enter and exit.

Several Ohio State professors have been assisting with development of that stage of the project, including Jeffrey Chalmers and S.T. Yang in the Department of Chemical and Biomolecular Engineering and Irina Artsimovitch of the Department of Microbiology.

Even after they do their laboratory experiments, Feinberg says he and his colleagues will be a long way from making any claims about what happens inside real biological cells. Their work implies that scientists should be cautious when interpreting the results of biochemical experiments, nothing more.

Still, he acknowledged that the theorem in the PNAS paper could ultimately help answer fundamental questions in chemistry, biochemistry, and evolution.

"Cells probably need a mechanism to switch readily between states in response to external signals," he ventured. "It could be an evolutionary advantage. So I think biology wants this to happen."

This work was funded by the National Science Foundation.

Martin Feinberg | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>