Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When biology gets 'Quirky,' scientists turn to math

26.07.2006
Ohio State University researchers who are trying to solve a longstanding mystery in chemistry and biology are getting answers from a seemingly unusual source: mathematics.

Ultimately, the project could provide a tool for clinical research, because it could explain why cells sometimes react to medicines in unexpected ways.

A chemical such as a drug could function very well inside a cell most of the time, and then suddenly not work well at all, as if a switch had been flipped. For researchers who are trying to develop new biochemical agents, this means that results can vary widely from experiment to experiment.

Martin Feinberg and his colleagues wanted to know why.

Through computer simulations, they discovered that the answer -- mathematically, at least -- could come down to the rate at which chemicals enter a cell. The results of their simulations appear in a recent issue of the Proceedings of the National Academy of Sciences (PNAS).

Feinberg, the Richard M. Morrow Professor of chemical engineering and professor of mathematics at Ohio State, and Gheorghe Craciun, formerly of Ohio State's Mathematical Biosciences Institute, created visualizations of chemical reactions called species-reaction graphs ("species" are the different chemicals in a reaction). The graphs are maps of a sort, where lines and curves connect chemicals like roads connect destinations. Craciun is now an assistant professor of mathematics and biomolecular chemistry at the University of Wisconsin.

Based on the number of connections and how they overlap, Feinberg and Craciun can tell with a glance whether a reaction is predictable, or whether it might be what they call "quirky" -- prone to the switching behavior that occasionally produces strange results. They created a theorem that lays out mathematical rules that researchers can use to make the same judgment.

As it turns out, many of the graphs that describe biological reactions are quirky.

"Some of the graphs that come from classical biological reactions -- even simple ones -- indicate that these reactions might behave in very quirky ways," Feinberg said.

"This behavior may be essential to biology itself."

To test the theorem, he and his colleagues simulated a very simple chemical system on a computer: the behavior of a simplified biological cell containing an enzyme, DHFR (dihydrofolate reductase). DHFR is important in cell division because it helps provide an essential building block of DNA.

In fact, a classical chemotherapy agent, methotrexate, is used to thwart the operation of DHFR so that the out-of-control cell proliferation characteristic of cancer cannot take place.

Student Yangzhong Tang created the simulation software as part of her doctoral work. She described it as a simple computational tool which shows how rapidly DHFR converts reactants to products, depending on the rate at which reactants enter the cell. In particular, the software helps determine circumstances under which DHFR can operate in two very different conversion modes -- a rapid one and a slower one.

For the simulation, the researchers started with a low supply rate of reactants and then gradually increased the supply rate. At first, the DHFR converted reactants to products at 95 percent efficiency. Then, it abruptly dropped to 65 percent. When they decreased the flow rate, it just as abruptly returned to 95 percent.

"It was like a switch had been flipped, and the trigger was an increase or decrease of only 0.02 milliliters of reactant solution per minute," Feinberg said. "We were surprised to see that we could create such a dramatic switch just by changing the reactant supply rate a tiny amount.

"Keep in mind that this is in the absence of any methotrexate at all," he continued. "To understand what happens in the presence of the anti-cancer drug, one should be aware of the quirky phenomena that might be exhibited even when no methotrexate is present."

Seeing an unexpectedly low conversion efficiency of an enzyme during a laboratory experiment, scientists might erroneously conclude that there's something wrong with the enzyme or that the gene responsible for manufacturing the enzyme had gone awry. In fact, the real culprit might be a chemical switch, intrinsic to the mathematics, that is triggered by the reactant supply rate, Feinberg said.

The next step for the researchers is to try to observe this behavior in the laboratory. They are designing a plastic model cell with specialized filters so that they can carefully measure chemicals that enter and exit.

Several Ohio State professors have been assisting with development of that stage of the project, including Jeffrey Chalmers and S.T. Yang in the Department of Chemical and Biomolecular Engineering and Irina Artsimovitch of the Department of Microbiology.

Even after they do their laboratory experiments, Feinberg says he and his colleagues will be a long way from making any claims about what happens inside real biological cells. Their work implies that scientists should be cautious when interpreting the results of biochemical experiments, nothing more.

Still, he acknowledged that the theorem in the PNAS paper could ultimately help answer fundamental questions in chemistry, biochemistry, and evolution.

"Cells probably need a mechanism to switch readily between states in response to external signals," he ventured. "It could be an evolutionary advantage. So I think biology wants this to happen."

This work was funded by the National Science Foundation.

Martin Feinberg | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>