Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When biology gets 'Quirky,' scientists turn to math

26.07.2006
Ohio State University researchers who are trying to solve a longstanding mystery in chemistry and biology are getting answers from a seemingly unusual source: mathematics.

Ultimately, the project could provide a tool for clinical research, because it could explain why cells sometimes react to medicines in unexpected ways.

A chemical such as a drug could function very well inside a cell most of the time, and then suddenly not work well at all, as if a switch had been flipped. For researchers who are trying to develop new biochemical agents, this means that results can vary widely from experiment to experiment.

Martin Feinberg and his colleagues wanted to know why.

Through computer simulations, they discovered that the answer -- mathematically, at least -- could come down to the rate at which chemicals enter a cell. The results of their simulations appear in a recent issue of the Proceedings of the National Academy of Sciences (PNAS).

Feinberg, the Richard M. Morrow Professor of chemical engineering and professor of mathematics at Ohio State, and Gheorghe Craciun, formerly of Ohio State's Mathematical Biosciences Institute, created visualizations of chemical reactions called species-reaction graphs ("species" are the different chemicals in a reaction). The graphs are maps of a sort, where lines and curves connect chemicals like roads connect destinations. Craciun is now an assistant professor of mathematics and biomolecular chemistry at the University of Wisconsin.

Based on the number of connections and how they overlap, Feinberg and Craciun can tell with a glance whether a reaction is predictable, or whether it might be what they call "quirky" -- prone to the switching behavior that occasionally produces strange results. They created a theorem that lays out mathematical rules that researchers can use to make the same judgment.

As it turns out, many of the graphs that describe biological reactions are quirky.

"Some of the graphs that come from classical biological reactions -- even simple ones -- indicate that these reactions might behave in very quirky ways," Feinberg said.

"This behavior may be essential to biology itself."

To test the theorem, he and his colleagues simulated a very simple chemical system on a computer: the behavior of a simplified biological cell containing an enzyme, DHFR (dihydrofolate reductase). DHFR is important in cell division because it helps provide an essential building block of DNA.

In fact, a classical chemotherapy agent, methotrexate, is used to thwart the operation of DHFR so that the out-of-control cell proliferation characteristic of cancer cannot take place.

Student Yangzhong Tang created the simulation software as part of her doctoral work. She described it as a simple computational tool which shows how rapidly DHFR converts reactants to products, depending on the rate at which reactants enter the cell. In particular, the software helps determine circumstances under which DHFR can operate in two very different conversion modes -- a rapid one and a slower one.

For the simulation, the researchers started with a low supply rate of reactants and then gradually increased the supply rate. At first, the DHFR converted reactants to products at 95 percent efficiency. Then, it abruptly dropped to 65 percent. When they decreased the flow rate, it just as abruptly returned to 95 percent.

"It was like a switch had been flipped, and the trigger was an increase or decrease of only 0.02 milliliters of reactant solution per minute," Feinberg said. "We were surprised to see that we could create such a dramatic switch just by changing the reactant supply rate a tiny amount.

"Keep in mind that this is in the absence of any methotrexate at all," he continued. "To understand what happens in the presence of the anti-cancer drug, one should be aware of the quirky phenomena that might be exhibited even when no methotrexate is present."

Seeing an unexpectedly low conversion efficiency of an enzyme during a laboratory experiment, scientists might erroneously conclude that there's something wrong with the enzyme or that the gene responsible for manufacturing the enzyme had gone awry. In fact, the real culprit might be a chemical switch, intrinsic to the mathematics, that is triggered by the reactant supply rate, Feinberg said.

The next step for the researchers is to try to observe this behavior in the laboratory. They are designing a plastic model cell with specialized filters so that they can carefully measure chemicals that enter and exit.

Several Ohio State professors have been assisting with development of that stage of the project, including Jeffrey Chalmers and S.T. Yang in the Department of Chemical and Biomolecular Engineering and Irina Artsimovitch of the Department of Microbiology.

Even after they do their laboratory experiments, Feinberg says he and his colleagues will be a long way from making any claims about what happens inside real biological cells. Their work implies that scientists should be cautious when interpreting the results of biochemical experiments, nothing more.

Still, he acknowledged that the theorem in the PNAS paper could ultimately help answer fundamental questions in chemistry, biochemistry, and evolution.

"Cells probably need a mechanism to switch readily between states in response to external signals," he ventured. "It could be an evolutionary advantage. So I think biology wants this to happen."

This work was funded by the National Science Foundation.

Martin Feinberg | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>