Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computational model simulates AZT metabolism in mitochondria

26.07.2006
Researchers at the Virginia Bioinformatics Institute (VBI) at Virginia Tech have developed a computational model that allows scientists to better understand the metabolism and toxicity of the HIV/AIDS drug zidovudine (azidothymidine, AZT).

AZT is used successfully as part of Highly Active Anti-Retroviral Therapy (HAART) to control the level of the human immunodeficiency virus in HIV-infected individuals. However, long-term use of AZT may lead to side-effects in some patients. David Samuels and coworkers are interested in finding out whether the toxic side effects of AZT can eventually be minimized or even eliminated. For this purpose, they have been developing a detailed computational model that allows scientists to simulate the biochemical reactions that take place when AZT is metabolized in cells, including their mitochondria, under different metabolic conditions. Drugs like AZT may interfere with DNA replication in the mitochondria, the energy factories of our cells, and can lead to potentially fatal side effects in patients undergoing HAART treatment.

Samuels, assistant professor at VBI, commented: "HAART is one of the biggest success stories in modern medicine. The goal of our work is to help improve this successful treatment by understanding the toxic effects that AZT can have in some people. There are many different ways that AZT could possibly interfere with mitochondria to cause the toxic side-effects. Our job is to model these proposed toxicity mechanisms to see which ones could actually lead to the mitochondrial defects found in AIDS patients." He added: "It is possible that no single mechanism is responsible for the toxicity, but that instead a combination of multiple effects is needed. That is the kind of problem that needs a systems biology approach."

When AZT reaches a cell, it is subject to some of the same metabolic modifications or phosphorylation events that are encountered by the four naturally occurring deoxynucleosides, the building blocks used to make DNA. However, modified AZT molecules lack a specific chemical group (a hydroxyl group) that would allow DNA replication to continue. This results in premature termination of DNA synthesis. It is thought that the triphosphorylated form of AZT can enter the mitochondrial matrix, the inner core of the mitochondrion, and disrupt the replication of mitochondrial DNA by prematurely terminating DNA synthesis.

Samuels added: "We're just starting our work. It is too early to say what the mechanism of mitochondrial toxicity of AZT is. The inhibition of deoxynucleoside metabolism is one possibility. The incorporation of AZT into mitochondrial DNA is another." He added: "The detailed computational model that we have developed should allow researchers to explore different hypotheses as to why AZT can lead to such debilitating side effects in some patients undergoing anti-retroviral treatment."

About the Virginia Bioinformatics Institute

The Virginia Bioinformatics Institute (VBI) at Virginia Tech has a research platform centered on understanding the "disease triangle" of host–pathogen–environment interactions in plants, humans and other animals. By successfully channeling innovation into transdisciplinary approaches that combine information technology and biology, researchers at VBI are addressing some of today's key challenges in the biomedical, environmental and plant sciences.

Barry Whyte | EurekAlert!
Further information:
http://www.vbi.vt.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>