Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study pinpoints protein's role in cancer spread

26.07.2006
Edinburgh scientists have identified the way a specific cell protein can trigger the spread of cancer.

The study by researchers in the Cell Signalling Unit, University of Edinburgh Cancer Research Centre could pave the way for new drugs which limit the protein's ability to turn a normal cell cancerous.

The protein, MDM2, normally functions to control the activity of a key cancer preventing protein called p53. In some of the body's cells, the biochemical ratio between MDM2 and p53 can become unbalanced causing MDM2 to act as a cancer-promoting agent.

The project's lead investigator, Dr Kathryn Ball, a researcher at the University, explains: "One way in which MDM2 controls the p53 protein is by activating its destruction and we are interested in understanding how this happens at a biochemical level.

"In the current study, funded by Cancer Research UK, we have identified protein fragments which can bind to MDM2, inhibiting its activity. These fragments could be a good template for drugs designed to hinder the role of MDM2 in the p53 destruction pathway. We hope our findings may lead to improved treatments for a broad range of cancer types."

Welcoming the findings, Professor John Toy, medical director at Cancer Research UK, said: "p53 is a crucial protein that acts as a guardian of the normal cell. Its failure to do its job properly is associated with many types of cancer. If p53 is being destroyed by another protein in a cancer cell, then it offers an excellent target when designing new anti-cancer drugs. This research suggests MDM2 is just such a target."

Linda Menzies | EurekAlert!
Further information:
http://www.ed.ac.uk

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>