Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German biotech companies report new results on cultivated liver cells

26.07.2006
Prediction of toxicity and compound responses in hepatocytes continues to be a major concern for the pharmaceutical industry. Non-immortalised primary cells may best represent normal physiology.

The German biotech company Bionas GmbH, Rostock, has made a first study investigating primary human hepatocytes with in vitro test in the Bionas 2500 analyzing system. The human primary hepatocytes were provided by Primacyt GmbH, located in Schwerin, Germany. Primacyt has a unique know-how for serum free long-term human primary hepatocytes cultures.

The Bionas 2500 detects oxygen consumption, acidification and adhesion of cells on six sensor chips in parallel. All parameters are detected continuously and online during long-term measurements. Regeneration and recovery effects are monitored respectively. Primary human hepatocytes were cultured on collagen pre-coated chips in chemically defined Human Hepatocyte Maintenance Medium and, for comparison, in conventional two-dimensional cultures. The sensor chip based in vitro results were compared with standard assays for hepatocytes like albumin release and urea release. The effects of acetaminophen (AAP) were investigated.

The cells were exposed to AAP (50 - 2815 mg/l) for 24 h. Cell respiration was obviously inhibited by AAP concentrations above 500 mg/l whereas cell adhesion was marginally reduced. In conventional two dimensional cultures AAP application reduced albumin release. Comparison of primary human and rat cells shows obviously different hepatotoxic effects of AAP.

It seems that the primary human hepatocytes are less effected as the rat cells or the cell line HepG2. In conclusion the primary human cells are closer at the in-vivo situation as rat cells or artificial cell lines. Distinct differences can be also found if primary rat hepatocytes or the HepG2 cell line are used in the Bionas 2500 analyzing system.

The Bionas 2500 analyzing system clearly predicts compound effects on metabolism of primary cells. The combination of these primary human hepatocytes with the Bionas 2500 analyzing system opened new ways in drug discovery and toxicology.

Elise Kvarnstroem | alfa
Further information:
http://www.scanbalt.org

More articles from Life Sciences:

nachricht Light-driven reaction converts carbon dioxide into fuel
23.02.2017 | Duke University

nachricht Oil and gas wastewater spills alter microbes in West Virginia waters
23.02.2017 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>