Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Matrilin-3 gene discovered to prevent onset of osteoarthritis

25.07.2006
Researchers develop animal model to study causes of arthritis

A gene that is associated with osteoarthritis and skeletal deformities in people has been shown to be responsible for preventing the onset of osteoarthritis in adult mice, according to a recent study led by Rhode Island Hospital. The matrilin-3 gene plays a role in early bone development, controls bone mineral density in adulthood and prevents osteoarthritis later in life.

Mutations in matrilin-3 have previously been linked to certain skeletal disorders and hand osteoarthritis. But this study, reported in the cover article of the August issue of the American Journal of Pathology, is the first to demonstrate that the loss of the gene leads to osteoarthritis, a joint disease that is caused by deterioration of cartilage, and usually occurs later in life.

"Clearly there is a correlation between matrilin-3 and osteoarthritis. Potentially, we could use it as a diagnostic tool or to predict whether someone is likely to develop osteoarthritis," says senior author Qian Chen, PhD, director of cell and molecular biology, and head of orthopaedic biology research at Rhode Island Hospital.

Chen is also a professor of medical science, and holds the Michael G. Ehrlich Chair in Orthopaedic Research, both at Brown Medical School.

The research has also led to an animal model that can be used to study the development of arthritis in real time, Chen says. Previous research has attempted to pinpoint causes of osteoarthritis through other means, such as looking retrospectively at the causes of the disease or inflicting an injury on a joint to mimic a sports injury or trauma.

"In the long term, it helps us understand the mechanism of human osteoarthritis development. Very few molecules have even been associated with osteoarthritis, so this is a huge deal. Now that matrilin-3 has been clearly shown to develop osteoarthritis in an animal model, we can study it further," Chen says.

There are four matrilins, or proteins, that form the extracellular matrix (ECM), which holds cartilage together. Matrilin-1 and -3 are specific to skeleton tissues, while matrilin-2 and -4 are also found in other tissues throughout the body. There has been a link between mutated forms of matrilin-3 and hand osteoarthritis, as well as skeletal disorders such as multiple epiphyseal dysplasia (MED), a disorder that begins in childhood and can include malformation of the hands, feet and knees and abnormal curvature of the spine.

In this study, researchers knocked out matrilin-1 and -3 in mice in order to study their link to osteoarthritis. When matrilin-1 was knocked out, there was no apparent effect. When matrilin-3 was removed, the mice had a normal and fertile lifespan and appeared to have normal skeletal development.

However, without matrilin-3, researchers noticed that during embryonic development, mice developed premature and extended hypertrophy – the phase when cells increase in size to form bone. Later in life, those mice had higher bone mineral density (BMD) and higher rates of osteoarthritis. In people, BMD is a hallmark of certain forms of osteoarthritis.

Compared with mice whose genes had not been altered, the mice lacking matrilin-3 showed significantly higher BMD both in the knee joint and throughout the body at 18 weeks of age, the time when mice typically reach peak bone density. Clinical studies in humans have shown that the prevalence of knee and hip osteoarthritis increases with increasing BMD.

"Our study reveals an unexpected property of matrilin-3 in maintaining proper BMD, a factor that was not previously examined," the authors write. "However, the mechanism of the association between increased bone density and joint degeneration is not known. Our data show that matrilin-3 deficiency results in both the increase of BMD and joint cartilage degeneration, thereby connecting these two events together."

Researchers could not make the connection, however, between a lack of matrilin-3 and skeletal disorders, such as MED. The mice lacking matrilin-3 developed a higher incidence of osteoarthritis in adulthood without developing deformities in childhood.

The results challenge one theory of osteoarthritis – that the disease is caused by degeneration from an abnormal skeletal structure.

"Our study shows that even in those normal looking skeletons, you still develop osteoarthritis. So there's not necessarily a link between those two," Chen says. "Maybe there's something else that causes it, such as stiff bone."

Osteoarthritis affects more than 20 million Americans and is the most common type of arthritis. It is characterized by a breakdown in cartilage, commonly affecting the knees, hips and lower back. While younger people can develop osteoarthritis from joint injuries, the disease most often occurs in people over 65. The causes of osteoarthritis are not known, but they are believed to be both genetic and environmental – such as being overweight or suffering sports injuries.

Nicole Gustin | EurekAlert!
Further information:
http://www.lifespan.org
http://www.rhodeislandhospital.org

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>