Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop new tool to watch real-time chemical activity in cells

24.07.2006
Study has implications for speeding new drug design

Attempts to identify potential drugs that interfere with the action of one particular enzyme linked to heart disease and similar health problems led scientists at Johns Hopkins to create a new tool and new experimental approach that allow them to see multiple, real-time chemical reactions in living cells. Their report on the work is published July 21 in the journal ACS Chemical Biology.

Most current drug development operations test chemicals on enzymes isolated from their normal environs and then take further steps to see if the chemical can get into the cell to do its work, and figure out how poisonous the chemical is to a cell.

"Living cells are critical to our work because they show us how and what is actually happening in a normal context and time span when a chemical is added," says Jin Zhang, Ph.D., an assistant professor of pharmacology and molecular sciences in Hopkins' Institute for Basic Biomedical Sciences.

Testing chemicals on enzymes in living cells provides the opportunity to find potential drugs that work in new ways. For example, using living cells allows researchers to "see" where in the cell chemicals do their work. Scientists could then design new drugs to go to specific places within cells to work more efficiently. Also, streamlining the one-at-a-time approach offers the chance to study - and rule out or in - many potentially useful chemicals at once.

What Zhang's team developed is a biosensor and simple testing procedure that tells if a particular enzyme - called PKA - that acts like a "switch" is "on" or "off" in a living cell. The group has been focused on trying to understand and interfere with this enzyme switch, because if the enzyme is turned on at the wrong time or at the wrong place within cells, it can lead to cells misbehaving, which ultimately can lead to heart disease.

In the course of their work, the team built a protein biosensor that indicates if an enzyme located nearby is turned on or off. The sensor is made from a protein that glows, originally isolated from jellyfish. When PKA is turned off, the biosensor glows blue. When PKA is turned on and is physically close to a biosensor, PKA itself changes the shape of the biosensor, causing it to glow green instead.

Manipulating the sensor allows the researchers to direct it to specific locales within cells. That allows the researchers to see where in the cell the active enzyme is located. So this PKA sensor not only indicates whether the enzyme is on or off, but also locates where PKA is being turned on or off within the cell. "Proteins aren't spread out evenly in cells," says Zhang, "but tend to cluster together in order to do specific jobs, and we now can see how different clusters are regulated differently."

When the researchers put their new sensor into living mammalian cells growing in the lab, they were able to test the effects of 160 different chemicals at once and see if any of these chemicals could turn on or off the PKA enzyme by looking for green or blue glowing cells.

Of the 160 chemicals tested, three caused cells to turn on the switch and two others caused cells to turn off the switch.

The 160 chemicals tested are from the Johns Hopkins Clinical Compound Library, a collection of about 3,300 chemicals. Most of them are drugs already approved by the U.S. Food and Drug Administration, while others are drugs approved by regulatory agencies in other countries or are other clinically relevant chemicals.

"If we can find a new activity for a known drug, this may lead to a new use or a new way of thinking about that drug," says Zhang, who hopes to test the rest of the chemicals in the collection soon for their ability to interfere with the enzyme tested in this study. Finding a drug that can tame this enzyme could lead to new treatments for heart disease, diabetes, memory disorders and certain cancers, for example.

Zhang says the "high throughput" potential of the sensor may have wide-reaching applications that could be adapted to testing various chemicals to test chemicals for their ability to interfere with other enzymes related to PKA - which as a family are known as kinases - that are widely implicated in diseases and an emerging class of drug targets.

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>