Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher discovers new motor protein mechanism linked to heart disease and strokes

24.07.2006
Cardiomyopathy is an insidious disease which often strikes without warning and can lead to heart failure and eventual death. Although the disease can be traced to conditions such as high blood pressure, heart valve or arterial diseases and congenital heart defects, it is also caused by viral infections in the bloodstream.

In a paper to be published in the July issue of the journal Nature Structural and Molecular Biology, a Rutgers-Newark researcher and his coworkers reveal that they have identified a possible mechanism used by an important motor protein which acts as a catalyst that enables bacteria outside the human body to travel through the blood stream and infect organs such as the heart.

The findings were published by Rutgers-Newark Chemistry Assistant Professor Charalampos Kalodimos and his coworkers, in the article, "Disorder-order folding transitions underlie catalysis in the helicase motor of SecA." Identifying the way this motor protein works is significant because it may lead to the development of new pharmacological therapies which can target and kill the bacteria to prevent or minimize damage to the heart muscle. The results follow nearly two years of research funded by a $300,000 American Heart Association (AHA) grant. The AHA agreed to support Kalodimos's research because he is focusing on specific bacteria that cause cardiovascular diseases in both adults and children.

Using high-resolution NMR Spectroscopy technology, Kalodimos identified the mechanism of function of motor protein SecA, which uses chemical energy and converts it into mechanical energy. SecA is present only in bacteria and is not found in humans. SecA uses mechanical energy to secrete toxins and other harmful proteins to the exterior of the bacterium cell.

Once a bacterium infects a human or a host, some bacteria will use the SecA system to secrete specific bacteria proteins into the human body causing infections or diseases. Recent advances in NMR Spectroscopy allowed Kalodimos and his coworkers to observe how proteins work in motion. NMR spectroscopy exploits the interaction of radio waves with matter to give scientists a moving picture of molecular structures within the body. The methodology used in Kalodimos group provides researchers with detailed, moving pictures rather than static images produced by other technologies such as X-ray crystallography. Kalodimos likens the motor protein and bacteria activity he has identified to the United State Postal Service's zip code system used to process mail and direct it to its final destination.

"A city as a large as New York City has several different zip codes and a central post office must be present to scan and read these zip codes so the letters can reach their intended destinations," Kalodimos explains. "Proteins have one signal that operates similar to a zip code. The protein "zip code" is read or scanned by some specific protein or large protein machineries. These machineries are needed to transport the protein to the correct compartment within a cell."

He explained that once a bacterium infects a host or human, certain bacteria will use SecA to read the "zip code" system to secrete specific bacteria proteins into the human body.

"Somehow they fool the human body that these are human proteins and the human body begins to use them which may cause a stroke or heart failure in some cases," Kalodimos explains. "By identifying the way this motor protein works, at some point we will be able to develop drugs that can block the secretion of these proteins or limit the activity of SecA causing the bacteria to die before it can reach its destination."

Peter Haigney | EurekAlert!
Further information:
http://www.andromeda.rutgers.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>