Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bubbles go high-tech to fight tumors

24.07.2006
Bubbles: You’ve bathed in them, popped them, endured bad song lyrics about them. Now, University of Michigan researchers hope to add a more sophisticated application to the list—gas bubbles used like corks to block oxygen flow to tumors, or to deliver drugs.

The process of blocking blood flow to a tumor is called embolization, and using gas bubbles is a new technique in embolotherapy. What makes it so promising is that the technique allows doctors to control exactly where the bubbles are formed, so blockage of blood flow to surrounding tissue is minimal, said Joseph Bull, assistant professor of biomedical engineering at U-M.

The research of Bull and collaborator Brian Fowlkes, an associate professor in the Department of Radiology in the U-M Medical School, is currently focused on the fundamental vaporization and transport topics that must first be understood in order to translate this developmental technique to the clinic.

In traditional embolotherapy techniques, the so-called cork that doctors use to block the blood flow—called an emboli—is solid. For instance, it could be a blood clot or a gel of some kind. A major difficulty with these approaches is restricting the emboli to the tumor to minimize destruction of surrounding tissue, without extremely invasive procedures, Bull said. The emboli must be delivered by a catheter placed into the body at the tumor site.

Gas bubbles, on the other hand, allow very precise delivery because their formation can be controlled and directed from the outside, by a focused high intensity ultrasound.

This envisioned technique is actually a two-step process, Bull said. First, a stream of encapsulated superheated perfluorocarbon liquid droplets goes into the body by way of an intravenous injection. The droplets are small enough that they don’t lodge in vessels. Doctors image the droplets with standard ultrasound, and once the droplets reach their destination, scientists hit them with high intensity ultrasound. The ultrasound acts like a pin popping a water balloon. After the shell pops, the perfluorocarbon expands into a gas bubble that is approximately 125 times larger in volume than the droplet.

"If a bubble remained spherical its diameter would be much larger than that of the vessel," Bull said. "So it deforms into a long sausage-shaped bubble that lodges in the vessel like a cork. Two or three doses of bubbles will occlude most of the (blood) flow." Without blood flow, the tumor dies.

Because the bubble is so big, it’s critical to get the right vessel in order not to damage it.

"How flexible the vessel is plays a very important role in where you do this," Bull said. That is the subject of a paper coming out on gas embolotherapy in the August issue of the Journal of Biomechanical Engineering.

Bull’s post doctoral student Tao Ye was a co-author on the paper.

The technique could be very valuable in treating certain cancers, such as renal cancer and hepatocellular carcinoma, the most common form of liver cancer, causing about 1,250,000 deaths annually. However, cirrhosis of the liver makes it difficult to treat by the conventional method of removing the tumor and surrounding tissue, because so much of the liver is already damaged. This cancer has a high mortality rate.

Laura Bailey | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>