Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research simplifies diagnosis of Charcot-Marie-Tooth disease

24.07.2006
Hereditary Charcot-Marie-Tooth (CMT) disease strikes 1 in 2500 people. Researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) connected to the University of Antwerp are now demonstrating that mutations in mitofusin 2 are the major cause of CMT2, a specific type of the disease. These findings are important for a better understanding of CMT in general, and they also form the basis for a genetic test for CMT2. This test is already available.

Weakening the muscles

Charcot-Marie-Tooth (CMT) disease is the most common hereditary disorder of the peripheral nervous system, leading to a weakening of the muscles in the lower legs, feet and hands as the nerves that run from the spinal cord to the muscles die off. The syndrome is extremely variable: some patients hardly notice it, while others become confined to a wheelchair. Today, only palliative treatment is available - there are as yet no effective therapies for preventing, retarding, or stopping the course of the disease.

Knowledge of genes makes fast diagnosis possible

CMT embraces a heterogeneous group of disorders, all of which are caused by mutations in certain genes. Identifying these genes is fundamental to improving diagnosis. This is important for assessing what the further course of the disease might be for a given patient. But it is also important for providing genetic advice and prenatal and pre-implantation diagnosis for couples who desire to have children but whose families have a history of the disease. Research by Vincent Timmerman’s group underpinned the currently existing genetic test for CMT1A. However, for a long time scientists did not know which gene causes CMT2. In 2004, the VIB researchers in Antwerp, in collaboration with German and American research groups, showed that mitofusin 2 (MFN2) was altered in a large number of CMT2 patients.

Major cause

The current research of Kristien Verhoeven and Kristl Claeys, under the direction of Vincent Timmerman and Peter De Jonghe, reveals how important MFN2 is in the origin of CMT2. They studied 323 CMT patients, 249 of whom suffer from CMT2. From the study of these patients (and 170 healthy individuals), it is clear that mutations in MFN2 are the major cause of CMT2. On the basis of these results, genetic tests for CMT2 are now possible.

The cell’s energy suppliers

In addition, this research throws light on the mechanisms behind the origin of CMT2. MFN2 is a protein with an important function in the mitochondria, the cell’s energy suppliers. So, it’s clear that the role of mitochondria in CMT2 needs to be studied further. This could be a key to better understanding this complex disorder. And a better understanding could be a first step toward treatment. But, for the time being, treatment is still a long way off.

Joke Comijn | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>