Research simplifies diagnosis of Charcot-Marie-Tooth disease

Weakening the muscles

Charcot-Marie-Tooth (CMT) disease is the most common hereditary disorder of the peripheral nervous system, leading to a weakening of the muscles in the lower legs, feet and hands as the nerves that run from the spinal cord to the muscles die off. The syndrome is extremely variable: some patients hardly notice it, while others become confined to a wheelchair. Today, only palliative treatment is available – there are as yet no effective therapies for preventing, retarding, or stopping the course of the disease.

Knowledge of genes makes fast diagnosis possible

CMT embraces a heterogeneous group of disorders, all of which are caused by mutations in certain genes. Identifying these genes is fundamental to improving diagnosis. This is important for assessing what the further course of the disease might be for a given patient. But it is also important for providing genetic advice and prenatal and pre-implantation diagnosis for couples who desire to have children but whose families have a history of the disease. Research by Vincent Timmerman’s group underpinned the currently existing genetic test for CMT1A. However, for a long time scientists did not know which gene causes CMT2. In 2004, the VIB researchers in Antwerp, in collaboration with German and American research groups, showed that mitofusin 2 (MFN2) was altered in a large number of CMT2 patients.

Major cause

The current research of Kristien Verhoeven and Kristl Claeys, under the direction of Vincent Timmerman and Peter De Jonghe, reveals how important MFN2 is in the origin of CMT2. They studied 323 CMT patients, 249 of whom suffer from CMT2. From the study of these patients (and 170 healthy individuals), it is clear that mutations in MFN2 are the major cause of CMT2. On the basis of these results, genetic tests for CMT2 are now possible.

The cell’s energy suppliers

In addition, this research throws light on the mechanisms behind the origin of CMT2. MFN2 is a protein with an important function in the mitochondria, the cell’s energy suppliers. So, it’s clear that the role of mitochondria in CMT2 needs to be studied further. This could be a key to better understanding this complex disorder. And a better understanding could be a first step toward treatment. But, for the time being, treatment is still a long way off.

Media Contact

Joke Comijn alfa

More Information:

http://www.vib.be

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors