Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whether in mice or men, all cells age the same

21.07.2006
We can dye gray hair, lift sagging skin or boost lost hearing, but no visit to the day spa would be able to hide a newly discovered genetic marker for the toll that time takes on our cells. "We've found something that is at the core of aging," said Stuart Kim, PhD, professor of developmental biology and of genetics at the Stanford University School of Medicine.

In a study to be published in the July 21 issue of Public Library of Science-Genetics, Kim and colleagues report finding a group of genes that are consistently less active in older animals across a variety of species. The activity of these genes proved to be a consistent indicator of how far a cell had progressed toward its eventual demise.

Until now, researchers have studied genes that underlie aging in a single animal, such as flies or mice, or in different human tissues. However, a protein associated with aging in one species may not be relevant to the aging function in a different animal. This limitation had made it difficult to study the universal processes involved in aging.

Kim's work overturns a commonly held view that all animals, including humans, age like an abandoned home. Slowly but surely the windows break, the shingles fall off and floorboards rot, but there's no master plan for the decay.

That theory has left open questions about why tortoises and rockfish are still partying like 20-somethings at an age when humans are considered relics. At the other end of the spectrum, flies die off before young humans can even focus their eyes. Clearly, not all cells fall apart at the same rate.

"Aging isn't like the speed of light; it's not a constant," said Kim. Why animals and even people age at different rates prompted Kim to look deeper into the processes that control aging.

His new study suggests that the cell has a molecular homeowner that keeps up repairs until a predetermined time, when the owner picks up the welcome mat and moves out. Once that process kicks off, the decay happens as a matter of course. The homeowners in tortoise cells stick around for hundreds of years delaying the decay, while those in fly cells move out within weeks.

Although Kim's work doesn't identify what triggers that process, it does provide a way of detecting the point a cell has reached in its life span.

In the study, Kim and his colleagues looked at which genes were actively producing protein and at what level in flies and mice in a range of ages and in tissue taken from the muscle, brain and kidney of 81 people ranging in age from 20 to 80. The group used a microarray, which can detect the activity level of all genes in a cell or tissue. Genes that are more active are thought to be making more proteins.

One group of genes consistently made less protein as cells aged in all of the animals and tissues the group examined. These genes make up the cellular machinery called the electron transport chain, which generates energy in the cell's mitochondria.

Kim said the gene activity is a better indicator of a cell's relative maturity than a person's birthday. One 41-year-old participant had gene activity similar to that of people 10 to 20 years older; muscle tissue from the participant also appeared similar to that of older people. Likewise, the sample from a 64-year-old participant, whose muscles looked like those of a person 30 years younger, also showed gene activity patterns similar to a younger person.

These results confirm Kim's assumption that the rate of aging is at least in part genetically determined. Those study participants whose tissues appeared younger than their true age had something - something dearly sought by aging researchers - that made their cells keep activating genes in a more youthful pattern.

The question is: What causes the electron transport chain genes to slow their protein production and why? And why, if tortoises can live hundreds of years, do flies self-destruct in a matter of weeks?

Kim thinks there must be some reason behind when an animal's cells are programmed to begin falling apart. He points out that most animals begin to grow old at around the age when they would normally meet their demise in the wild. It's no coincidence, Kim noted, that 90 percent of mice get eaten in the first year and that mice start growing old in the lab at around that age.

Kim suggests that aging wouldn't have to happen if cells weren't programmed to fail. With a marker for aging in hand, he thinks future research will reveal what drives the process. "People think of aging and taxes as unavoidable," Kim said, "but in the case of aging, that's not true."

Amy Adams | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>