Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whether in mice or men, all cells age the same

21.07.2006
We can dye gray hair, lift sagging skin or boost lost hearing, but no visit to the day spa would be able to hide a newly discovered genetic marker for the toll that time takes on our cells. "We've found something that is at the core of aging," said Stuart Kim, PhD, professor of developmental biology and of genetics at the Stanford University School of Medicine.

In a study to be published in the July 21 issue of Public Library of Science-Genetics, Kim and colleagues report finding a group of genes that are consistently less active in older animals across a variety of species. The activity of these genes proved to be a consistent indicator of how far a cell had progressed toward its eventual demise.

Until now, researchers have studied genes that underlie aging in a single animal, such as flies or mice, or in different human tissues. However, a protein associated with aging in one species may not be relevant to the aging function in a different animal. This limitation had made it difficult to study the universal processes involved in aging.

Kim's work overturns a commonly held view that all animals, including humans, age like an abandoned home. Slowly but surely the windows break, the shingles fall off and floorboards rot, but there's no master plan for the decay.

That theory has left open questions about why tortoises and rockfish are still partying like 20-somethings at an age when humans are considered relics. At the other end of the spectrum, flies die off before young humans can even focus their eyes. Clearly, not all cells fall apart at the same rate.

"Aging isn't like the speed of light; it's not a constant," said Kim. Why animals and even people age at different rates prompted Kim to look deeper into the processes that control aging.

His new study suggests that the cell has a molecular homeowner that keeps up repairs until a predetermined time, when the owner picks up the welcome mat and moves out. Once that process kicks off, the decay happens as a matter of course. The homeowners in tortoise cells stick around for hundreds of years delaying the decay, while those in fly cells move out within weeks.

Although Kim's work doesn't identify what triggers that process, it does provide a way of detecting the point a cell has reached in its life span.

In the study, Kim and his colleagues looked at which genes were actively producing protein and at what level in flies and mice in a range of ages and in tissue taken from the muscle, brain and kidney of 81 people ranging in age from 20 to 80. The group used a microarray, which can detect the activity level of all genes in a cell or tissue. Genes that are more active are thought to be making more proteins.

One group of genes consistently made less protein as cells aged in all of the animals and tissues the group examined. These genes make up the cellular machinery called the electron transport chain, which generates energy in the cell's mitochondria.

Kim said the gene activity is a better indicator of a cell's relative maturity than a person's birthday. One 41-year-old participant had gene activity similar to that of people 10 to 20 years older; muscle tissue from the participant also appeared similar to that of older people. Likewise, the sample from a 64-year-old participant, whose muscles looked like those of a person 30 years younger, also showed gene activity patterns similar to a younger person.

These results confirm Kim's assumption that the rate of aging is at least in part genetically determined. Those study participants whose tissues appeared younger than their true age had something - something dearly sought by aging researchers - that made their cells keep activating genes in a more youthful pattern.

The question is: What causes the electron transport chain genes to slow their protein production and why? And why, if tortoises can live hundreds of years, do flies self-destruct in a matter of weeks?

Kim thinks there must be some reason behind when an animal's cells are programmed to begin falling apart. He points out that most animals begin to grow old at around the age when they would normally meet their demise in the wild. It's no coincidence, Kim noted, that 90 percent of mice get eaten in the first year and that mice start growing old in the lab at around that age.

Kim suggests that aging wouldn't have to happen if cells weren't programmed to fail. With a marker for aging in hand, he thinks future research will reveal what drives the process. "People think of aging and taxes as unavoidable," Kim said, "but in the case of aging, that's not true."

Amy Adams | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>