Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Whether in mice or men, all cells age the same

We can dye gray hair, lift sagging skin or boost lost hearing, but no visit to the day spa would be able to hide a newly discovered genetic marker for the toll that time takes on our cells. "We've found something that is at the core of aging," said Stuart Kim, PhD, professor of developmental biology and of genetics at the Stanford University School of Medicine.

In a study to be published in the July 21 issue of Public Library of Science-Genetics, Kim and colleagues report finding a group of genes that are consistently less active in older animals across a variety of species. The activity of these genes proved to be a consistent indicator of how far a cell had progressed toward its eventual demise.

Until now, researchers have studied genes that underlie aging in a single animal, such as flies or mice, or in different human tissues. However, a protein associated with aging in one species may not be relevant to the aging function in a different animal. This limitation had made it difficult to study the universal processes involved in aging.

Kim's work overturns a commonly held view that all animals, including humans, age like an abandoned home. Slowly but surely the windows break, the shingles fall off and floorboards rot, but there's no master plan for the decay.

That theory has left open questions about why tortoises and rockfish are still partying like 20-somethings at an age when humans are considered relics. At the other end of the spectrum, flies die off before young humans can even focus their eyes. Clearly, not all cells fall apart at the same rate.

"Aging isn't like the speed of light; it's not a constant," said Kim. Why animals and even people age at different rates prompted Kim to look deeper into the processes that control aging.

His new study suggests that the cell has a molecular homeowner that keeps up repairs until a predetermined time, when the owner picks up the welcome mat and moves out. Once that process kicks off, the decay happens as a matter of course. The homeowners in tortoise cells stick around for hundreds of years delaying the decay, while those in fly cells move out within weeks.

Although Kim's work doesn't identify what triggers that process, it does provide a way of detecting the point a cell has reached in its life span.

In the study, Kim and his colleagues looked at which genes were actively producing protein and at what level in flies and mice in a range of ages and in tissue taken from the muscle, brain and kidney of 81 people ranging in age from 20 to 80. The group used a microarray, which can detect the activity level of all genes in a cell or tissue. Genes that are more active are thought to be making more proteins.

One group of genes consistently made less protein as cells aged in all of the animals and tissues the group examined. These genes make up the cellular machinery called the electron transport chain, which generates energy in the cell's mitochondria.

Kim said the gene activity is a better indicator of a cell's relative maturity than a person's birthday. One 41-year-old participant had gene activity similar to that of people 10 to 20 years older; muscle tissue from the participant also appeared similar to that of older people. Likewise, the sample from a 64-year-old participant, whose muscles looked like those of a person 30 years younger, also showed gene activity patterns similar to a younger person.

These results confirm Kim's assumption that the rate of aging is at least in part genetically determined. Those study participants whose tissues appeared younger than their true age had something - something dearly sought by aging researchers - that made their cells keep activating genes in a more youthful pattern.

The question is: What causes the electron transport chain genes to slow their protein production and why? And why, if tortoises can live hundreds of years, do flies self-destruct in a matter of weeks?

Kim thinks there must be some reason behind when an animal's cells are programmed to begin falling apart. He points out that most animals begin to grow old at around the age when they would normally meet their demise in the wild. It's no coincidence, Kim noted, that 90 percent of mice get eaten in the first year and that mice start growing old in the lab at around that age.

Kim suggests that aging wouldn't have to happen if cells weren't programmed to fail. With a marker for aging in hand, he thinks future research will reveal what drives the process. "People think of aging and taxes as unavoidable," Kim said, "but in the case of aging, that's not true."

Amy Adams | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>