Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whether in mice or men, all cells age the same

21.07.2006
We can dye gray hair, lift sagging skin or boost lost hearing, but no visit to the day spa would be able to hide a newly discovered genetic marker for the toll that time takes on our cells. "We've found something that is at the core of aging," said Stuart Kim, PhD, professor of developmental biology and of genetics at the Stanford University School of Medicine.

In a study to be published in the July 21 issue of Public Library of Science-Genetics, Kim and colleagues report finding a group of genes that are consistently less active in older animals across a variety of species. The activity of these genes proved to be a consistent indicator of how far a cell had progressed toward its eventual demise.

Until now, researchers have studied genes that underlie aging in a single animal, such as flies or mice, or in different human tissues. However, a protein associated with aging in one species may not be relevant to the aging function in a different animal. This limitation had made it difficult to study the universal processes involved in aging.

Kim's work overturns a commonly held view that all animals, including humans, age like an abandoned home. Slowly but surely the windows break, the shingles fall off and floorboards rot, but there's no master plan for the decay.

That theory has left open questions about why tortoises and rockfish are still partying like 20-somethings at an age when humans are considered relics. At the other end of the spectrum, flies die off before young humans can even focus their eyes. Clearly, not all cells fall apart at the same rate.

"Aging isn't like the speed of light; it's not a constant," said Kim. Why animals and even people age at different rates prompted Kim to look deeper into the processes that control aging.

His new study suggests that the cell has a molecular homeowner that keeps up repairs until a predetermined time, when the owner picks up the welcome mat and moves out. Once that process kicks off, the decay happens as a matter of course. The homeowners in tortoise cells stick around for hundreds of years delaying the decay, while those in fly cells move out within weeks.

Although Kim's work doesn't identify what triggers that process, it does provide a way of detecting the point a cell has reached in its life span.

In the study, Kim and his colleagues looked at which genes were actively producing protein and at what level in flies and mice in a range of ages and in tissue taken from the muscle, brain and kidney of 81 people ranging in age from 20 to 80. The group used a microarray, which can detect the activity level of all genes in a cell or tissue. Genes that are more active are thought to be making more proteins.

One group of genes consistently made less protein as cells aged in all of the animals and tissues the group examined. These genes make up the cellular machinery called the electron transport chain, which generates energy in the cell's mitochondria.

Kim said the gene activity is a better indicator of a cell's relative maturity than a person's birthday. One 41-year-old participant had gene activity similar to that of people 10 to 20 years older; muscle tissue from the participant also appeared similar to that of older people. Likewise, the sample from a 64-year-old participant, whose muscles looked like those of a person 30 years younger, also showed gene activity patterns similar to a younger person.

These results confirm Kim's assumption that the rate of aging is at least in part genetically determined. Those study participants whose tissues appeared younger than their true age had something - something dearly sought by aging researchers - that made their cells keep activating genes in a more youthful pattern.

The question is: What causes the electron transport chain genes to slow their protein production and why? And why, if tortoises can live hundreds of years, do flies self-destruct in a matter of weeks?

Kim thinks there must be some reason behind when an animal's cells are programmed to begin falling apart. He points out that most animals begin to grow old at around the age when they would normally meet their demise in the wild. It's no coincidence, Kim noted, that 90 percent of mice get eaten in the first year and that mice start growing old in the lab at around that age.

Kim suggests that aging wouldn't have to happen if cells weren't programmed to fail. With a marker for aging in hand, he thinks future research will reveal what drives the process. "People think of aging and taxes as unavoidable," Kim said, "but in the case of aging, that's not true."

Amy Adams | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht New gene catalog of ocean microbiome reveals surprises
18.08.2017 | University of Hawaii at Manoa

nachricht Organ Crosstalk: Fatty Liver Can Cause Damage to Other Organs
18.08.2017 | Deutsches Zentrum für Diabetesforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>