Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic-resolution structure of a ribozyme yields insights into RNA catalysis and the origins of life

21.07.2006
Which came first, nucleic acids or proteins? This question is molecular biology's version of the "chicken-or-the-egg" riddle. Genes made of nucleic acids (DNA or RNA) contain the instructions for making proteins, but enzymes made of proteins are needed to replicate genes. For those who try to understand how life originated, this once seemed an intractable paradox.

The solution came with the discovery 20 years ago that certain types of RNA can act as enzymes, catalyzing reactions just as enzymes made of protein do. This means, in principle, that a single type of molecule, RNA, might be able to both encode information and replicate it. The idea that the first self-replicating molecules in a pre-biotic primordial soup were composed of RNA, known as the "RNA World" hypothesis, is one of the central tenets upon which many theories of the origin of life are now based.

Research on the structure and function of RNA enzymes, or ribozymes, has been one of the main activities in the Center for the Molecular Biology of RNA at the University of California, Santa Cruz, as well as many other laboratories throughout the world. In addition to offering glimpses into how life may have originated, ribozymes are also being engineered in many academic and industrial laboratories to be therapeutic agents for potential use in fighting infectious and chronic diseases.

Scientists at UCSC's RNA Center have now obtained a near-atomic resolution image of the three-dimensional shape of a very simple--and therefore potentially understandable--ribozyme in which the atoms are uniquely arranged and poised for catalysis in the context of an intricately twisted and folded segment of RNA. The new findings are described in a paper by graduate student Monika Martick and her adviser, William Scott, associate professor of chemistry and biochemistry, in the July 27 issue of the journal Cell. The paper will be available online on July 20 at http://www.cell.com.

Using the technique of macromolecular x-ray crystallography, Martick and Scott were able to obtain a three-dimensional picture of the spatial arrangement of the several thousand atoms that comprise the ribozyme, known as the hammerhead ribozyme. The resulting color-coded structure was recently featured on the cover of the abstract book for the annual meeting of the RNA Society held in Seattle in early June.

"The structure illustrates unambiguously how functional groups of the RNA mediate acid-base chemical catalysis, permitting us to suggest that acid-base chemistry is so fundamental to enzyme catalysis that it predates the origin of protein enzymes," Scott said.

For Scott, these results are the culmination of 19 years of research on the structure of the hammerhead ribozyme. He started work on the project as a graduate student at UC Berkeley in 1987, a few months after the ribozyme was discovered. Later, as a postdoctoral researcher at the MRC Laboratory of Molecular Biology in Cambridge, England, he achieved his first breakthrough.

Scott subsequently built an internationally-recognized research team at UCSC that has performed static and time-resolved experiments resulting in the first crystallographic time-lapse "movie" of ribozyme catalysis. His group has also elucidated structures of other RNAs, including the recent structure of a highly conserved motif from the SARS virus genome.

Scott's structural observations of the hammerhead ribozyme, however, could not explain a growing number of biochemical experimental results. The hammerhead ribozyme has been the subject of intensive investigations by researchers around the world, and Scott found his most cherished accomplishments called into question.

"In 2002, I had two very lucky breaks," he said. "The first was that I learned of a new form of this ribozyme that was 1,000 times faster than the most widely studied form. The second was that an exceptionally talented graduate student, Monika Martick, joined my research group."

The faster form includes an extended sequence of RNA building blocks that researchers had previously neglected to study. Martick and Scott set to work on this newly discovered form of the ribozyme, achieving a breakthrough in March after four years of experiments.

"Monika e-mailed me from the Stanford Synchrotron at 3 a.m. to show me the most beautiful electron density map I had ever seen," Scott said. "I was so amazed I probably didn't sleep for the next three weeks."

The new results explained the earlier discrepancies in a way that reconciled them with the previous 11 years of Scott's experiments, he said.

"Seldom do scientific research projects have this sort of fairy tale ending. It has been extremely rewarding as well as humbling," Scott said.

The RNA Center at UCSC was immensely helpful, providing support that was instrumental to the group's success, he added. Harry Noller, Sinsheimer Professor of Molecular Biology and director of the RNA Center, has assembled a world-class team of investigators that includes two members of the National Academy of Sciences and two Howard Hughes Medical Institute investigators.

"It is very inspiring to work with this collective concentration of talent," Scott said.

Tim Stephens | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>