Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic-resolution structure of a ribozyme yields insights into RNA catalysis and the origins of life

21.07.2006
Which came first, nucleic acids or proteins? This question is molecular biology's version of the "chicken-or-the-egg" riddle. Genes made of nucleic acids (DNA or RNA) contain the instructions for making proteins, but enzymes made of proteins are needed to replicate genes. For those who try to understand how life originated, this once seemed an intractable paradox.

The solution came with the discovery 20 years ago that certain types of RNA can act as enzymes, catalyzing reactions just as enzymes made of protein do. This means, in principle, that a single type of molecule, RNA, might be able to both encode information and replicate it. The idea that the first self-replicating molecules in a pre-biotic primordial soup were composed of RNA, known as the "RNA World" hypothesis, is one of the central tenets upon which many theories of the origin of life are now based.

Research on the structure and function of RNA enzymes, or ribozymes, has been one of the main activities in the Center for the Molecular Biology of RNA at the University of California, Santa Cruz, as well as many other laboratories throughout the world. In addition to offering glimpses into how life may have originated, ribozymes are also being engineered in many academic and industrial laboratories to be therapeutic agents for potential use in fighting infectious and chronic diseases.

Scientists at UCSC's RNA Center have now obtained a near-atomic resolution image of the three-dimensional shape of a very simple--and therefore potentially understandable--ribozyme in which the atoms are uniquely arranged and poised for catalysis in the context of an intricately twisted and folded segment of RNA. The new findings are described in a paper by graduate student Monika Martick and her adviser, William Scott, associate professor of chemistry and biochemistry, in the July 27 issue of the journal Cell. The paper will be available online on July 20 at http://www.cell.com.

Using the technique of macromolecular x-ray crystallography, Martick and Scott were able to obtain a three-dimensional picture of the spatial arrangement of the several thousand atoms that comprise the ribozyme, known as the hammerhead ribozyme. The resulting color-coded structure was recently featured on the cover of the abstract book for the annual meeting of the RNA Society held in Seattle in early June.

"The structure illustrates unambiguously how functional groups of the RNA mediate acid-base chemical catalysis, permitting us to suggest that acid-base chemistry is so fundamental to enzyme catalysis that it predates the origin of protein enzymes," Scott said.

For Scott, these results are the culmination of 19 years of research on the structure of the hammerhead ribozyme. He started work on the project as a graduate student at UC Berkeley in 1987, a few months after the ribozyme was discovered. Later, as a postdoctoral researcher at the MRC Laboratory of Molecular Biology in Cambridge, England, he achieved his first breakthrough.

Scott subsequently built an internationally-recognized research team at UCSC that has performed static and time-resolved experiments resulting in the first crystallographic time-lapse "movie" of ribozyme catalysis. His group has also elucidated structures of other RNAs, including the recent structure of a highly conserved motif from the SARS virus genome.

Scott's structural observations of the hammerhead ribozyme, however, could not explain a growing number of biochemical experimental results. The hammerhead ribozyme has been the subject of intensive investigations by researchers around the world, and Scott found his most cherished accomplishments called into question.

"In 2002, I had two very lucky breaks," he said. "The first was that I learned of a new form of this ribozyme that was 1,000 times faster than the most widely studied form. The second was that an exceptionally talented graduate student, Monika Martick, joined my research group."

The faster form includes an extended sequence of RNA building blocks that researchers had previously neglected to study. Martick and Scott set to work on this newly discovered form of the ribozyme, achieving a breakthrough in March after four years of experiments.

"Monika e-mailed me from the Stanford Synchrotron at 3 a.m. to show me the most beautiful electron density map I had ever seen," Scott said. "I was so amazed I probably didn't sleep for the next three weeks."

The new results explained the earlier discrepancies in a way that reconciled them with the previous 11 years of Scott's experiments, he said.

"Seldom do scientific research projects have this sort of fairy tale ending. It has been extremely rewarding as well as humbling," Scott said.

The RNA Center at UCSC was immensely helpful, providing support that was instrumental to the group's success, he added. Harry Noller, Sinsheimer Professor of Molecular Biology and director of the RNA Center, has assembled a world-class team of investigators that includes two members of the National Academy of Sciences and two Howard Hughes Medical Institute investigators.

"It is very inspiring to work with this collective concentration of talent," Scott said.

Tim Stephens | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>