Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic-resolution structure of a ribozyme yields insights into RNA catalysis and the origins of life

21.07.2006
Which came first, nucleic acids or proteins? This question is molecular biology's version of the "chicken-or-the-egg" riddle. Genes made of nucleic acids (DNA or RNA) contain the instructions for making proteins, but enzymes made of proteins are needed to replicate genes. For those who try to understand how life originated, this once seemed an intractable paradox.

The solution came with the discovery 20 years ago that certain types of RNA can act as enzymes, catalyzing reactions just as enzymes made of protein do. This means, in principle, that a single type of molecule, RNA, might be able to both encode information and replicate it. The idea that the first self-replicating molecules in a pre-biotic primordial soup were composed of RNA, known as the "RNA World" hypothesis, is one of the central tenets upon which many theories of the origin of life are now based.

Research on the structure and function of RNA enzymes, or ribozymes, has been one of the main activities in the Center for the Molecular Biology of RNA at the University of California, Santa Cruz, as well as many other laboratories throughout the world. In addition to offering glimpses into how life may have originated, ribozymes are also being engineered in many academic and industrial laboratories to be therapeutic agents for potential use in fighting infectious and chronic diseases.

Scientists at UCSC's RNA Center have now obtained a near-atomic resolution image of the three-dimensional shape of a very simple--and therefore potentially understandable--ribozyme in which the atoms are uniquely arranged and poised for catalysis in the context of an intricately twisted and folded segment of RNA. The new findings are described in a paper by graduate student Monika Martick and her adviser, William Scott, associate professor of chemistry and biochemistry, in the July 27 issue of the journal Cell. The paper will be available online on July 20 at http://www.cell.com.

Using the technique of macromolecular x-ray crystallography, Martick and Scott were able to obtain a three-dimensional picture of the spatial arrangement of the several thousand atoms that comprise the ribozyme, known as the hammerhead ribozyme. The resulting color-coded structure was recently featured on the cover of the abstract book for the annual meeting of the RNA Society held in Seattle in early June.

"The structure illustrates unambiguously how functional groups of the RNA mediate acid-base chemical catalysis, permitting us to suggest that acid-base chemistry is so fundamental to enzyme catalysis that it predates the origin of protein enzymes," Scott said.

For Scott, these results are the culmination of 19 years of research on the structure of the hammerhead ribozyme. He started work on the project as a graduate student at UC Berkeley in 1987, a few months after the ribozyme was discovered. Later, as a postdoctoral researcher at the MRC Laboratory of Molecular Biology in Cambridge, England, he achieved his first breakthrough.

Scott subsequently built an internationally-recognized research team at UCSC that has performed static and time-resolved experiments resulting in the first crystallographic time-lapse "movie" of ribozyme catalysis. His group has also elucidated structures of other RNAs, including the recent structure of a highly conserved motif from the SARS virus genome.

Scott's structural observations of the hammerhead ribozyme, however, could not explain a growing number of biochemical experimental results. The hammerhead ribozyme has been the subject of intensive investigations by researchers around the world, and Scott found his most cherished accomplishments called into question.

"In 2002, I had two very lucky breaks," he said. "The first was that I learned of a new form of this ribozyme that was 1,000 times faster than the most widely studied form. The second was that an exceptionally talented graduate student, Monika Martick, joined my research group."

The faster form includes an extended sequence of RNA building blocks that researchers had previously neglected to study. Martick and Scott set to work on this newly discovered form of the ribozyme, achieving a breakthrough in March after four years of experiments.

"Monika e-mailed me from the Stanford Synchrotron at 3 a.m. to show me the most beautiful electron density map I had ever seen," Scott said. "I was so amazed I probably didn't sleep for the next three weeks."

The new results explained the earlier discrepancies in a way that reconciled them with the previous 11 years of Scott's experiments, he said.

"Seldom do scientific research projects have this sort of fairy tale ending. It has been extremely rewarding as well as humbling," Scott said.

The RNA Center at UCSC was immensely helpful, providing support that was instrumental to the group's success, he added. Harry Noller, Sinsheimer Professor of Molecular Biology and director of the RNA Center, has assembled a world-class team of investigators that includes two members of the National Academy of Sciences and two Howard Hughes Medical Institute investigators.

"It is very inspiring to work with this collective concentration of talent," Scott said.

Tim Stephens | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>