Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German Biotech Companies Report New Results on Cultivated Liver Cells

21.07.2006
Prediction of toxicity and compound responses in hepatocytes continues to be a major concern for the pharmaceutical industry. Non-immortalised primary cells may best represent normal physiology.

The German biotech company Bionas GmbH, Rostock, has made a first study investigating primary human hepatocytes with in vitro test in the Bionas® 2500 analyzing system. The human primary hepatocytes were provided by Primacyt GmbH, located in Schwerin, Germany. Primacyt has a unique know-how for serum free long-term human primary hepatocytes cultures.

The Bionas® 2500 detects oxygen consumption, acidification and adhesion of cells on six sensor chips in parallel. All parameters are detected continuously and online during long-term measurements. Regeneration and recovery effects are monitored respectively. Primary human hepatocytes were cultured on collagen pre-coated chips in chemically defined Human Hepatocyte Maintenance Medium and, for comparison, in conventional two-dimensional cultures. The sensor chip based in vitro results were compared with standard assays for hepatocytes like albumin release and urea release. The effects of acetaminophen (AAP) were investigated. The cells were exposed to AAP (50 - 2815 mg/l) for 24 h. Cell respiration was obviously inhibited by AAP concentrations above 500 mg/l whereas cell adhesion was marginally reduced. In conventional two dimensional cultures AAP application reduced albumin release. Comparison of primary human and rat cells shows obviously different hepatotoxic effects of AAP.

It seems that the primary human hepatocytes are less effected as the rat cells or the cell line HepG2. In conclusion the primary human cells are closer at the in-vivo situation as rat cells or artificial cell lines. Distinct differences can be also found if primary rat hepatocytes or the HepG2 cell line are used in the Bionas® 2500 analyzing system.

The Bionas® 2500 analyzing system clearly predicts compound effects on metabolism of primary cells. The combination of these primary human hepatocytes with the Bionas® 2500 analyzing system opened new ways in drug discovery and toxicology.

About Bionas:

Bionas was founded in 2001 as spin-off by members of the University of Rostock, Germany. In Rostock we are employing physicists, biochemists, chemists and hard- and software engineers. The Company has more then ten years of experience in the development of semiconductor sensor and its application on living cells. Main investors are Micronas Holding GmbH and GENIUS Venture Capital GmbH.

Bionas develops new tools for applications in the life sciences, drug discovery, cancer research and environment protection providing deeper insights into cell metabolism.

With this world's first ready-to-use sensor chip system, Bionas can reduce the need for animal testing and increase the safety of preclinical studies. So Bionas want to make a significant contribution to environmental protection and fight against cancer.

About PRIMACYT:

PRIMACYT Cell Culture Technology GmbH has its roots in HeparCell GmbH, originally founded by 4 private individuals in June 2004. In October 2005 HeparCell GmbH changed its corporate name to PRIMACYT Cell Culture Technology. With HEPAC2 the young biotech start up company has developed a long-term human hepatocyte culture system, that may be used as a biosensor for the analysis of drugs, food additives, and chemicals. HEPAC2 allows the repetitive application of drugs within one cell culture. Thereby, hepatocytes may not only be used for one experiment, but instead can be "recycled" and may be used after a recovery period for a second, a third or even a fourth round of experiments. Thus, the system is designed to reduce the number of animal experiments and to reduce the costs of preclinical studies.

Both companies are member of BioCon Valley, the life science initiative Mecklenburg-Vorpommern, Germany - a partner of ScanBalt fmba, Copenhagen.

Contact:
Dr. Michael Schulze
Head of Sales & Marketing
Bionas GmbH
Friedrich-Barnewitz-Straße 3
18119 Rostock-Warnemünde
Germany
Tel.: +49 381 5196-241
Fax: +49 381 5196-246
mail: michael.schulze@bionas.de

Dr. Heinrich Cuypers | idw
Further information:
http://www.scanbalt.org
http://www.bionas.de
http://www.primacyt.de

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>