Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


German Biotech Companies Report New Results on Cultivated Liver Cells

Prediction of toxicity and compound responses in hepatocytes continues to be a major concern for the pharmaceutical industry. Non-immortalised primary cells may best represent normal physiology.

The German biotech company Bionas GmbH, Rostock, has made a first study investigating primary human hepatocytes with in vitro test in the Bionas® 2500 analyzing system. The human primary hepatocytes were provided by Primacyt GmbH, located in Schwerin, Germany. Primacyt has a unique know-how for serum free long-term human primary hepatocytes cultures.

The Bionas® 2500 detects oxygen consumption, acidification and adhesion of cells on six sensor chips in parallel. All parameters are detected continuously and online during long-term measurements. Regeneration and recovery effects are monitored respectively. Primary human hepatocytes were cultured on collagen pre-coated chips in chemically defined Human Hepatocyte Maintenance Medium and, for comparison, in conventional two-dimensional cultures. The sensor chip based in vitro results were compared with standard assays for hepatocytes like albumin release and urea release. The effects of acetaminophen (AAP) were investigated. The cells were exposed to AAP (50 - 2815 mg/l) for 24 h. Cell respiration was obviously inhibited by AAP concentrations above 500 mg/l whereas cell adhesion was marginally reduced. In conventional two dimensional cultures AAP application reduced albumin release. Comparison of primary human and rat cells shows obviously different hepatotoxic effects of AAP.

It seems that the primary human hepatocytes are less effected as the rat cells or the cell line HepG2. In conclusion the primary human cells are closer at the in-vivo situation as rat cells or artificial cell lines. Distinct differences can be also found if primary rat hepatocytes or the HepG2 cell line are used in the Bionas® 2500 analyzing system.

The Bionas® 2500 analyzing system clearly predicts compound effects on metabolism of primary cells. The combination of these primary human hepatocytes with the Bionas® 2500 analyzing system opened new ways in drug discovery and toxicology.

About Bionas:

Bionas was founded in 2001 as spin-off by members of the University of Rostock, Germany. In Rostock we are employing physicists, biochemists, chemists and hard- and software engineers. The Company has more then ten years of experience in the development of semiconductor sensor and its application on living cells. Main investors are Micronas Holding GmbH and GENIUS Venture Capital GmbH.

Bionas develops new tools for applications in the life sciences, drug discovery, cancer research and environment protection providing deeper insights into cell metabolism.

With this world's first ready-to-use sensor chip system, Bionas can reduce the need for animal testing and increase the safety of preclinical studies. So Bionas want to make a significant contribution to environmental protection and fight against cancer.


PRIMACYT Cell Culture Technology GmbH has its roots in HeparCell GmbH, originally founded by 4 private individuals in June 2004. In October 2005 HeparCell GmbH changed its corporate name to PRIMACYT Cell Culture Technology. With HEPAC2 the young biotech start up company has developed a long-term human hepatocyte culture system, that may be used as a biosensor for the analysis of drugs, food additives, and chemicals. HEPAC2 allows the repetitive application of drugs within one cell culture. Thereby, hepatocytes may not only be used for one experiment, but instead can be "recycled" and may be used after a recovery period for a second, a third or even a fourth round of experiments. Thus, the system is designed to reduce the number of animal experiments and to reduce the costs of preclinical studies.

Both companies are member of BioCon Valley, the life science initiative Mecklenburg-Vorpommern, Germany - a partner of ScanBalt fmba, Copenhagen.

Dr. Michael Schulze
Head of Sales & Marketing
Bionas GmbH
Friedrich-Barnewitz-Straße 3
18119 Rostock-Warnemünde
Tel.: +49 381 5196-241
Fax: +49 381 5196-246

Dr. Heinrich Cuypers | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>