Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German Biotech Companies Report New Results on Cultivated Liver Cells

21.07.2006
Prediction of toxicity and compound responses in hepatocytes continues to be a major concern for the pharmaceutical industry. Non-immortalised primary cells may best represent normal physiology.

The German biotech company Bionas GmbH, Rostock, has made a first study investigating primary human hepatocytes with in vitro test in the Bionas® 2500 analyzing system. The human primary hepatocytes were provided by Primacyt GmbH, located in Schwerin, Germany. Primacyt has a unique know-how for serum free long-term human primary hepatocytes cultures.

The Bionas® 2500 detects oxygen consumption, acidification and adhesion of cells on six sensor chips in parallel. All parameters are detected continuously and online during long-term measurements. Regeneration and recovery effects are monitored respectively. Primary human hepatocytes were cultured on collagen pre-coated chips in chemically defined Human Hepatocyte Maintenance Medium and, for comparison, in conventional two-dimensional cultures. The sensor chip based in vitro results were compared with standard assays for hepatocytes like albumin release and urea release. The effects of acetaminophen (AAP) were investigated. The cells were exposed to AAP (50 - 2815 mg/l) for 24 h. Cell respiration was obviously inhibited by AAP concentrations above 500 mg/l whereas cell adhesion was marginally reduced. In conventional two dimensional cultures AAP application reduced albumin release. Comparison of primary human and rat cells shows obviously different hepatotoxic effects of AAP.

It seems that the primary human hepatocytes are less effected as the rat cells or the cell line HepG2. In conclusion the primary human cells are closer at the in-vivo situation as rat cells or artificial cell lines. Distinct differences can be also found if primary rat hepatocytes or the HepG2 cell line are used in the Bionas® 2500 analyzing system.

The Bionas® 2500 analyzing system clearly predicts compound effects on metabolism of primary cells. The combination of these primary human hepatocytes with the Bionas® 2500 analyzing system opened new ways in drug discovery and toxicology.

About Bionas:

Bionas was founded in 2001 as spin-off by members of the University of Rostock, Germany. In Rostock we are employing physicists, biochemists, chemists and hard- and software engineers. The Company has more then ten years of experience in the development of semiconductor sensor and its application on living cells. Main investors are Micronas Holding GmbH and GENIUS Venture Capital GmbH.

Bionas develops new tools for applications in the life sciences, drug discovery, cancer research and environment protection providing deeper insights into cell metabolism.

With this world's first ready-to-use sensor chip system, Bionas can reduce the need for animal testing and increase the safety of preclinical studies. So Bionas want to make a significant contribution to environmental protection and fight against cancer.

About PRIMACYT:

PRIMACYT Cell Culture Technology GmbH has its roots in HeparCell GmbH, originally founded by 4 private individuals in June 2004. In October 2005 HeparCell GmbH changed its corporate name to PRIMACYT Cell Culture Technology. With HEPAC2 the young biotech start up company has developed a long-term human hepatocyte culture system, that may be used as a biosensor for the analysis of drugs, food additives, and chemicals. HEPAC2 allows the repetitive application of drugs within one cell culture. Thereby, hepatocytes may not only be used for one experiment, but instead can be "recycled" and may be used after a recovery period for a second, a third or even a fourth round of experiments. Thus, the system is designed to reduce the number of animal experiments and to reduce the costs of preclinical studies.

Both companies are member of BioCon Valley, the life science initiative Mecklenburg-Vorpommern, Germany - a partner of ScanBalt fmba, Copenhagen.

Contact:
Dr. Michael Schulze
Head of Sales & Marketing
Bionas GmbH
Friedrich-Barnewitz-Straße 3
18119 Rostock-Warnemünde
Germany
Tel.: +49 381 5196-241
Fax: +49 381 5196-246
mail: michael.schulze@bionas.de

Dr. Heinrich Cuypers | idw
Further information:
http://www.scanbalt.org
http://www.bionas.de
http://www.primacyt.de

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>