Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German Biotech Companies Report New Results on Cultivated Liver Cells

21.07.2006
Prediction of toxicity and compound responses in hepatocytes continues to be a major concern for the pharmaceutical industry. Non-immortalised primary cells may best represent normal physiology.

The German biotech company Bionas GmbH, Rostock, has made a first study investigating primary human hepatocytes with in vitro test in the Bionas® 2500 analyzing system. The human primary hepatocytes were provided by Primacyt GmbH, located in Schwerin, Germany. Primacyt has a unique know-how for serum free long-term human primary hepatocytes cultures.

The Bionas® 2500 detects oxygen consumption, acidification and adhesion of cells on six sensor chips in parallel. All parameters are detected continuously and online during long-term measurements. Regeneration and recovery effects are monitored respectively. Primary human hepatocytes were cultured on collagen pre-coated chips in chemically defined Human Hepatocyte Maintenance Medium and, for comparison, in conventional two-dimensional cultures. The sensor chip based in vitro results were compared with standard assays for hepatocytes like albumin release and urea release. The effects of acetaminophen (AAP) were investigated. The cells were exposed to AAP (50 - 2815 mg/l) for 24 h. Cell respiration was obviously inhibited by AAP concentrations above 500 mg/l whereas cell adhesion was marginally reduced. In conventional two dimensional cultures AAP application reduced albumin release. Comparison of primary human and rat cells shows obviously different hepatotoxic effects of AAP.

It seems that the primary human hepatocytes are less effected as the rat cells or the cell line HepG2. In conclusion the primary human cells are closer at the in-vivo situation as rat cells or artificial cell lines. Distinct differences can be also found if primary rat hepatocytes or the HepG2 cell line are used in the Bionas® 2500 analyzing system.

The Bionas® 2500 analyzing system clearly predicts compound effects on metabolism of primary cells. The combination of these primary human hepatocytes with the Bionas® 2500 analyzing system opened new ways in drug discovery and toxicology.

About Bionas:

Bionas was founded in 2001 as spin-off by members of the University of Rostock, Germany. In Rostock we are employing physicists, biochemists, chemists and hard- and software engineers. The Company has more then ten years of experience in the development of semiconductor sensor and its application on living cells. Main investors are Micronas Holding GmbH and GENIUS Venture Capital GmbH.

Bionas develops new tools for applications in the life sciences, drug discovery, cancer research and environment protection providing deeper insights into cell metabolism.

With this world's first ready-to-use sensor chip system, Bionas can reduce the need for animal testing and increase the safety of preclinical studies. So Bionas want to make a significant contribution to environmental protection and fight against cancer.

About PRIMACYT:

PRIMACYT Cell Culture Technology GmbH has its roots in HeparCell GmbH, originally founded by 4 private individuals in June 2004. In October 2005 HeparCell GmbH changed its corporate name to PRIMACYT Cell Culture Technology. With HEPAC2 the young biotech start up company has developed a long-term human hepatocyte culture system, that may be used as a biosensor for the analysis of drugs, food additives, and chemicals. HEPAC2 allows the repetitive application of drugs within one cell culture. Thereby, hepatocytes may not only be used for one experiment, but instead can be "recycled" and may be used after a recovery period for a second, a third or even a fourth round of experiments. Thus, the system is designed to reduce the number of animal experiments and to reduce the costs of preclinical studies.

Both companies are member of BioCon Valley, the life science initiative Mecklenburg-Vorpommern, Germany - a partner of ScanBalt fmba, Copenhagen.

Contact:
Dr. Michael Schulze
Head of Sales & Marketing
Bionas GmbH
Friedrich-Barnewitz-Straße 3
18119 Rostock-Warnemünde
Germany
Tel.: +49 381 5196-241
Fax: +49 381 5196-246
mail: michael.schulze@bionas.de

Dr. Heinrich Cuypers | idw
Further information:
http://www.scanbalt.org
http://www.bionas.de
http://www.primacyt.de

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>