Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into how serotonin reduces appetite could help in developing safer anti-obesity drugs

20.07.2006
A study led by a UT Southwestern Medical Center researcher sheds light on how the brain chemical serotonin, when spurred by diet drugs such as Fen-phen, works to curb appetite.

That knowledge could aid in the design of safer anti-obesity drugs nearly a decade after Fen-phen was banned for causing harmful side effects.

The study, which tested the effect of several drugs that alter serotonin levels in the brain, found that serotonin activates some neurons and melanocortin-4 receptors, or MC4Rs, to curb appetite and at the same time blocks other neurons that normally act to increase appetite.

The dual effect helps explain how such drugs, including Fen-phen, spur weight loss.

The finding, available online and in the July 20 issue of Neuron, also reinforces the role of serotonin – a regulator of emotions, mood and sleep – in affecting the brain's melanocortin system, a key molecular pathway that controls body weight.

"The more we understand about the pathways and the way serotonergic drugs regulate body weight, the more it one day might lead to harnessing beneficial properties of anti-obesity treatments like Fen-phen and minimizing the harmful side effects," said Dr. Joel Elmquist, professor of internal medicine at UT Southwestern and co-senior author of the study.

In the United States, about 66 percent of adults are obese or overweight, as are 16 percent of young people aged 6 to 19, according to the Centers for Disease Control and Prevention. The trend is significant because being overweight or obese increases the risk of harmful health consequences, such as heart disease, stroke, diabetes, non-alcoholic liver disease and death.

Drugs that enhance the brain's release of serotonin have helped people lose weight. Fen-phen, which paired fenfluramine with phentermine, had such success. The drug combination, however, also led some patients to develop cardiac complications, Dr. Elmquist said. The drug was removed from the market in 1997.

But the mechanisms of how it caused weight loss were never fully determined, he said.

So a few years ago, Dr. Elmquist and his research team set out to detail how fenfluramine affected the brain's molecular pathways to reduce appetite. In 2002, they examined the region of the brain's hypothalamus containing the arcuate nucleus, or ARC. In the ARC, drug-induced serotonin activates brain cells called pro-opiomelanocortin neurons, or POMC, which in turn release a hormone that acts on the MC4R to reduce appetite.

The team's new study shows how serotonin also simultaneously blocks other neurons, known as NPY/AgRP, from being able to inhibit activity of MC4Rs. By blocking this inhibitory activity, serotonin prevents an increase in appetite.

Researchers studied the effect of Fen-phen and other serotonin-inciting drugs on both normal and genetically engineered lean and obese mice. They found that serotonin's dual regulation of POMC and AgRP neurons is necessary to promote weight loss.

"The finding increases the understanding of the molecular circuitry that controls body weight in response to changing levels of serotonin," Dr. Elmquist said. "An overarching goal of this understanding, for humans, is to design specific, safe drugs to fight obesity."

Dr. Elmquist, who recently left Harvard Medical School, directs the newly formed Center for Hypothalamic Research at UT Southwestern. The center, along with the Taskforce for Obesity Research, a National Institutes of Health Interdisciplinary Research Center, is part of the institution's effort to investigate the causes of obesity, metabolic syndrome and diabetes.

Cliff Despres | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>