Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into how serotonin reduces appetite could help in developing safer anti-obesity drugs

20.07.2006
A study led by a UT Southwestern Medical Center researcher sheds light on how the brain chemical serotonin, when spurred by diet drugs such as Fen-phen, works to curb appetite.

That knowledge could aid in the design of safer anti-obesity drugs nearly a decade after Fen-phen was banned for causing harmful side effects.

The study, which tested the effect of several drugs that alter serotonin levels in the brain, found that serotonin activates some neurons and melanocortin-4 receptors, or MC4Rs, to curb appetite and at the same time blocks other neurons that normally act to increase appetite.

The dual effect helps explain how such drugs, including Fen-phen, spur weight loss.

The finding, available online and in the July 20 issue of Neuron, also reinforces the role of serotonin – a regulator of emotions, mood and sleep – in affecting the brain's melanocortin system, a key molecular pathway that controls body weight.

"The more we understand about the pathways and the way serotonergic drugs regulate body weight, the more it one day might lead to harnessing beneficial properties of anti-obesity treatments like Fen-phen and minimizing the harmful side effects," said Dr. Joel Elmquist, professor of internal medicine at UT Southwestern and co-senior author of the study.

In the United States, about 66 percent of adults are obese or overweight, as are 16 percent of young people aged 6 to 19, according to the Centers for Disease Control and Prevention. The trend is significant because being overweight or obese increases the risk of harmful health consequences, such as heart disease, stroke, diabetes, non-alcoholic liver disease and death.

Drugs that enhance the brain's release of serotonin have helped people lose weight. Fen-phen, which paired fenfluramine with phentermine, had such success. The drug combination, however, also led some patients to develop cardiac complications, Dr. Elmquist said. The drug was removed from the market in 1997.

But the mechanisms of how it caused weight loss were never fully determined, he said.

So a few years ago, Dr. Elmquist and his research team set out to detail how fenfluramine affected the brain's molecular pathways to reduce appetite. In 2002, they examined the region of the brain's hypothalamus containing the arcuate nucleus, or ARC. In the ARC, drug-induced serotonin activates brain cells called pro-opiomelanocortin neurons, or POMC, which in turn release a hormone that acts on the MC4R to reduce appetite.

The team's new study shows how serotonin also simultaneously blocks other neurons, known as NPY/AgRP, from being able to inhibit activity of MC4Rs. By blocking this inhibitory activity, serotonin prevents an increase in appetite.

Researchers studied the effect of Fen-phen and other serotonin-inciting drugs on both normal and genetically engineered lean and obese mice. They found that serotonin's dual regulation of POMC and AgRP neurons is necessary to promote weight loss.

"The finding increases the understanding of the molecular circuitry that controls body weight in response to changing levels of serotonin," Dr. Elmquist said. "An overarching goal of this understanding, for humans, is to design specific, safe drugs to fight obesity."

Dr. Elmquist, who recently left Harvard Medical School, directs the newly formed Center for Hypothalamic Research at UT Southwestern. The center, along with the Taskforce for Obesity Research, a National Institutes of Health Interdisciplinary Research Center, is part of the institution's effort to investigate the causes of obesity, metabolic syndrome and diabetes.

Cliff Despres | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>