Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Possible birthplace of malignant brain tumors identified

20.07.2006
Researchers have found that abnormal stimulation of a cellular trigger that normally regulates replenishment of brain cells in adults causes invasive tumor-like growths in mice. Removing the abnormal stimulation causes the growths to regress--a finding the researchers said suggests a possible treatment for the lethal, aggressive brain tumors called malignant gliomas.

Arturo Alvarez-Buylla and Erica L. Jackson, of the University of California, San Francisco, and colleagues reported their findings in a paper in the July 20, 2006, Neuron, published by Cell Press. In their studies, they sought to discover whether neural stem cells in the brain called B cells carry a receptor--known as platelet-derived growth factor receptor á (PDGFRá)--for the signaling molecule PDGF.

Neural stem cells are immature cells that serve as the continual source of new brain cells in adults, and PDGF is known as an important regulator of such cells. Also, PDGF has been implicated as a key signaling molecule underlying the formation of brain tumors. PDGF triggers such cell response by plugging into the target receptor on the stem cell, like a key inserting into a lock.

There had been indirect evidence that neural stem cells give rise to brain tumors. "However, it has not been shown in vivo that tumor stem cells are derived from normal stem cells or that a specific population of cells with demonstrated stem cell properties is capable of initiating tumor formation," wrote the researchers.

Using tracers, the researchers discovered that PDGFRá is, indeed, found on the stem cells in both mouse and human brain tissue. They also found that the receptor is triggered by PDGF in the stem cells to regulate their production of mature brain cells. The researchers located the PDGFRá-containing cells in the subventricular zone (SVZ) of the brain, which is the center for production of new brain cells in adults.

The researchers also found that infusing PDGF into mouse brain caused abnormal growth--called hyperplasia--of tumor-like nodules that invaded surrounding brain tissue. Their analysis indicated that the PDGF infusion caused the stem cells to halt their normal production of mature brain cells and launch into the abnormal proliferation pathway. Importantly, the researchers found that stopping the PDGF infusion caused a complete regression of the nodules.

The researchers wrote that "these findings are significant due to our limited knowledge of surface markers for neural stem cells. Our data also provide evidence of a link between these PDGFRá B cells and the early changes associated with tumor initiation, suggesting they may be targets of neoplastic transformation. The regression of atypical hyperplasia after PDGF removal described here suggests that inhibition of PDGF signaling could provide a useful therapy for those gliomas in which the pathway is upregulated, especially given the recovery of the normal architecture after regression of the hyperplasia."

In a preview of the paper in the same issue of Neuron, Santosh Kesari and Charles D. Stiles wrote that the new findings "lend weight" to the argument that the stem cells identified by Alvarez-Buylla and his colleagues are the cells or origin for malignant gliomas. They wrote that such work offers "therapeutic opportunities," emphasizing that "the people that matter the most do not have the luxury of time to watch this work unfold. The median interval from diagnosis to death for patients with malignant glioma is currently only 14 months."

Heidi Hardman | EurekAlert!
Further information:
http://www.neuron.org
http://www.cell.com

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>