Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Possible birthplace of malignant brain tumors identified

20.07.2006
Researchers have found that abnormal stimulation of a cellular trigger that normally regulates replenishment of brain cells in adults causes invasive tumor-like growths in mice. Removing the abnormal stimulation causes the growths to regress--a finding the researchers said suggests a possible treatment for the lethal, aggressive brain tumors called malignant gliomas.

Arturo Alvarez-Buylla and Erica L. Jackson, of the University of California, San Francisco, and colleagues reported their findings in a paper in the July 20, 2006, Neuron, published by Cell Press. In their studies, they sought to discover whether neural stem cells in the brain called B cells carry a receptor--known as platelet-derived growth factor receptor á (PDGFRá)--for the signaling molecule PDGF.

Neural stem cells are immature cells that serve as the continual source of new brain cells in adults, and PDGF is known as an important regulator of such cells. Also, PDGF has been implicated as a key signaling molecule underlying the formation of brain tumors. PDGF triggers such cell response by plugging into the target receptor on the stem cell, like a key inserting into a lock.

There had been indirect evidence that neural stem cells give rise to brain tumors. "However, it has not been shown in vivo that tumor stem cells are derived from normal stem cells or that a specific population of cells with demonstrated stem cell properties is capable of initiating tumor formation," wrote the researchers.

Using tracers, the researchers discovered that PDGFRá is, indeed, found on the stem cells in both mouse and human brain tissue. They also found that the receptor is triggered by PDGF in the stem cells to regulate their production of mature brain cells. The researchers located the PDGFRá-containing cells in the subventricular zone (SVZ) of the brain, which is the center for production of new brain cells in adults.

The researchers also found that infusing PDGF into mouse brain caused abnormal growth--called hyperplasia--of tumor-like nodules that invaded surrounding brain tissue. Their analysis indicated that the PDGF infusion caused the stem cells to halt their normal production of mature brain cells and launch into the abnormal proliferation pathway. Importantly, the researchers found that stopping the PDGF infusion caused a complete regression of the nodules.

The researchers wrote that "these findings are significant due to our limited knowledge of surface markers for neural stem cells. Our data also provide evidence of a link between these PDGFRá B cells and the early changes associated with tumor initiation, suggesting they may be targets of neoplastic transformation. The regression of atypical hyperplasia after PDGF removal described here suggests that inhibition of PDGF signaling could provide a useful therapy for those gliomas in which the pathway is upregulated, especially given the recovery of the normal architecture after regression of the hyperplasia."

In a preview of the paper in the same issue of Neuron, Santosh Kesari and Charles D. Stiles wrote that the new findings "lend weight" to the argument that the stem cells identified by Alvarez-Buylla and his colleagues are the cells or origin for malignant gliomas. They wrote that such work offers "therapeutic opportunities," emphasizing that "the people that matter the most do not have the luxury of time to watch this work unfold. The median interval from diagnosis to death for patients with malignant glioma is currently only 14 months."

Heidi Hardman | EurekAlert!
Further information:
http://www.neuron.org
http://www.cell.com

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>