Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find protein associated with brain cell death

20.07.2006
Neuroscientists at the Case Western Reserve University School of Medicine have found evidence of which protein in the brain's immune cells triggers a cascade of reactions that produces unregulated free radical production that eventually leads to the neural cell death found in Alzheimer's disease.

They report their findings in the Journal of Biological Chemistry article, "Fibrillar Beta-Amyloid Stimulated Intracellular Signaling Cascades Require Vav for Induction of Respiratory Burst and Phagocytosis in Monocytes and Microglia."

The researchers discuss the role that the multi-domain protein Vav plays in the intercellular signaling of microglia, the brain's primary immune cell, when it produces an inflammatory response when coming into contact with beta-amyloid fibrils that form the harmful brain plaque.

The primary goal of this study was to evaluate potential signaling intermediates upstream from the oxidation, said the researchers. They had an interest in a group of signaling molecules (guanine nucleotides exchange factors) that are known to activate oxidation. Vav was selected from the group for study.

The inflammatory response that arise when the microglia connects with the plaque has been suspected as producing the oxidative damage observed in both human and animal models of AD, report the researchers.

This current study builds on prior research studies that produced evidence of the microglia mounting this inflammatory immune response by whittling down the various components in that reaction.

"We have recently shown that microglia employ a multi-receptor cell surface complex to detect and respond to amyloid –beta fibrils," the researchers write. "These receptor elements act in concert to stimulate intercellular signaling cascades as well as initiate a novel type of phagocytosis (cell death) in microglia."

"Vav has been found to be the key regulatory element within the intercellular signaling cascade," said Brandy Wilkinson, the study's lead researcher. Her co-investigators are Jessica Koenigsknecht-Talboo, Christian Grommes, C.Y. Daniel Lee and Gary Landreth from the Alzheimer Research Laboratory in the Case department of neuroscience. Vav also plays a critical role in the initial microglial response to the plaque.

Oxidative damage has long been suspected as playing an early critical role in AD. Because the events that trigger the beginnings of AD are still unknown, the Case researchers began targeting research on the reaction between the plaque and immune cells.

In in vitro studies of brain tissue from mice, the researchers found that the microglia had the appropriate immune response that the plaque was harmful, but then the protein Vav was found to be a component in oxidative damage since elimination of the protein resulted in reduced free radical production.

Wilkinson said by understanding this biological component in the disease process, it holds the potential to "push back the severity of the disease" by developing new drugs that specifically target the component causing the most destruction and decreasing the possibility of injuring or interrupting other biological processes.

Susan Griffith | EurekAlert!
Further information:
http://www.case.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>