Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Figuring out function from bacteria's bewildering forms

20.07.2006
The constellation of shapes and sizes among bacteria is as remarkable as it is mysterious. Why should Spirochaeta halophila resemble a bedspring coil, Stella a star and Clostridium cocleatum a partly eaten donut? No one really knows.

A new report in the Proceedings of the National Academy of Sciences by Indiana University Bloomington scientists answers that form-and-function question for one bacterium, the aquatic Caulobacter crescentus, whose cells are anchored to solid objects by conspicuous and distinctive stalks.

"We've found the bacteria can take up nutrients with their stalks," said microbiologist Yves Brun, who led the study. "This is the first example that we know of in which a major feature of a bacterium's shape can be tied to a specific function."

Despite their tiny size and readiness for laboratory study, far less is known about the physiological utility of bacterial shapes than, say, the streamlined forms of fish, sharks and dolphins, or the elongated spires of pine and redwood trees.

Brun said C. crescentus' stalk acts as a sort of antenna that amplifies the uptake of organic phosphate from the surrounding environment. The narrow stalk adds little volume to the cell, and incoming nutrients diffuse toward the cell's main body, where nutrients are quickly assimilated by metabolic processes. Phosphate is an important molecule to all organisms. It is involved in DNA repair and duplication, the expression of DNA, the regulation of protein action, membrane synthesis and the transfer of energy within cells.

The scientists used fluorescence microscopy to see where organic phosphate enters C. crescentus cells. As a gram negative bacterium, C. crescentus has two membranes -- an outer membrane and an inner membrane, with a space called the "periplasm" in between. Experiments demonstrated initial entry of organic phosphate across the entire cell surface, including the stalk. Once across the outer membrane, the organic phosphate is converted to inorganic phosphate and diffuses from the stalk toward the cell body periplasm. When the phosphate reaches the periplasm, the phosphate is taken across the inner membrane and into the central part (cytoplasm) of the cell.

"The stalk essentially increases the cell's reach into the environment but without the cost of increasing the cell's volume and surface area, which would be expensive from an energetic standpoint," Brun said.

Using mathematical models, the scientists showed that absorption of a nutrient using an antenna was a far more efficient morphology for nutrient uptake than alternate cell shapes in which the stalk plays no special role. The models assume the bacteria encounter nutrients via diffusion from their surrounding medium.

"Our report makes the point that in calm aquatic environments where there is no mixing of the liquid and therefore the motion of nutrient molecules is dominated by diffusion, it is the cell's length that is the most important parameter for nutrient uptake," Brun said.

"Imagine the nutrient molecule as a tiny tennis ball undergoing diffusion, that is bouncing back and forth off other molecules in random directions. It is easy to imagine that the tennis ball will be just as likely to make contact with a baseball bat as it will a tennis racket. And the longer the baseball bat, the larger the number of diffusing tennis balls that will make contact. That's why the stalk seems to be so advantageous for the cell. This is in contrast to cases where there is mixing of the liquid and where total surface area -- not length -- becomes more important. The stalk shape is advantageous in both situations because it increases surface area with minimal increase in volume, and at the same time it can be 15 or more times longer than the cell body."

The implications of the group's discovery are two-fold, Brun said. If stalks improve the efficiency of the uptake of other nutrients, the structures and appropriate transport proteins could be added to bacteria commonly used in drug production and toxic spill clean-ups. Bacteria are often used as workhorses in the mass-conversion of one molecule to another. Improving the speed of uptake of a substrate molecule by the bacteria could hypothetically speed drug production. "If we could figure out how to get the bacteria used in bioremediation to make stalks, we could improve their ability to take up pollutants and up their efficiency," he said.

But Brun also says the discovery has ecological significance. "Bacteria with stalks and other prostheses are ubiquitous in all the earth's aquatic environments," he said. "Phosphorus is a limiting nutrient in determining the productivity of lakes and oceans. The stalked bacteria are central players in scavenging phosphorus in oceans and lakes, and reintroducing it into the food chain."

C. crescentus is an unusual bacterium whose lifespan encompasses two phases: a mobile "swarmer" phase, in which the cells have a single flagellum, and a sedentary "stalked" phase in which the cells shed their flagella, affix themselves to rocks or pebbles (or the sides of water pipes) with the help of a very sticky adhesive, and then grow a stalk.

In April, Brun and colleagues from Brown University reported in the Proceedings of the National Academy of Sciences that the polysaccharide adhesive C. crescentus uses to affix itself to solid objects appears to be the strongest glue produced in the natural world.

David Bricker | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>