Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small, but mighty

20.07.2006
Breakthrough analysis raises questions about link between minute organism and climate

While phytoplankton scientists focus their research on some of the smallest organisms in the world, the impacts can be global. This week, in Proceedings of the National Academy of Sciences, a genomic analysis of the smallest, free-living eukaryote offers insight into its ability to thrive in the world's oceans and evolutionary biology. Known as Ostreococcus tauri, the analyzed phytoplankton has been thought to be not only the smallest eukaryote, but also ancient, dating back 1,500 million years and capable of photosynthesis that helps with carbon cycling. This genomic analysis offers important clues regarding the minimum genome size necessary for an organism to be able to live as a free living cell, perform photosynthesis, impact carbon cycling, and influence the climate.

In biology, organisms are divided into two major groupings: prokaryotes and eukaryotes, with eukaryotes being the more structurally complex. Humans, other animals, plants, fungi, and multi-cellular and complex unicellular microorganisms all fall within the "superkingdom" of eukaryotes.

"This is pretty big news," said Dr. Alexandra Worden, one of the paper's authors and an assistant professor at the University of Miami Rosenstiel School of Marine & Atmospheric Science, who was named a Moore Foundation Young Investigator in Marine Microbiology in 2004. Worden worked with the Osteococcus genome consortium, a european initiative to sequence this important organisms genome. "We have recently found that at times organisms such as Ostreococcus can photosynthetically produce more biomass than cyanobacteria, which are found in much greater numbers. Also, there is pretty good evidence that predators are consuming the carbon that is produced. This is important since these organisms don't sink on their own, so their fate – whether destroyed by viruses or consumed by larger organisms – dictates how they contribute to the global carbon cycle."

The prevailing indicator of climate change and global warming has been the increase in atmospheric carbon dioxide. Scientists agree that the ocean plays a key role in removing carbon dioxide from the atmosphere in a process known as the carbon cycle. Photosynthesizing organisms, such as the Ostreococcus consume carbon and release oxygen in its place.

"Certainly, the dynamics of these organisms are very important to understand since they are the photosynthesizers of the ocean. How much carbon they produce and where it goes are really important," Worden said. "Right now, we can only say that understanding the physiological controls of their growth – which is what the genome sequence helps us do – will help us to be more predictive of what changes might occur in such populations and how the oceans' ability to deal with climate change will be affected."

The study in the current Proceedings unveils the complete genome sequence of the world's smallest free-living eukaryote known to date. Scientists were able to observe the genetic basis of nutrient uptake and photosynthesis capabilities. Additionally, the scientists found that while the organism is compact, its genome is structurally complex, but quite streamlined.

Ivy Kupec | EurekAlert!
Further information:
http://www.miami.edu

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>