Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of agile molecular motors could aid in treating motor neuron diseases

19.07.2006
Over the last several months, the labs of Yale Goldman, MD, PhD, Director of the Pennsylvania Muscle Institute at the University of Pennsylvania School of Medicine, and Erika Holzbaur, PhD, Professor of Physiology, have published a group of papers that, taken together, show proteins that function as molecular motors are surprisingly flexible and agile, able to navigate obstacles within the cell. These observations could lead to better ways to treat motor neuron diseases.

Motor neuron diseases are a group of progressive neurological disorders that destroy motor neurons, the cells that control voluntary muscles for such activities as speaking, walking, breathing, and swallowing. When these neurons die, the muscle itself atrophies. A well-known motor neuron disease is amyotrophic lateral sclerosis (ALS, commonly known as Lou Gehrig's disease).


Possible models for the bi-directional movement observed in the dynein-dynactin molecular motor along microtubules. A) Random, diffusive motions; B) Flexible rotation of the dynein ring; and C) Steps dictated by the microtubule lattice. Credit: Jennifer L. Ross, PhD, University of Pennsylvania School of Medicine; Nature Cell Biology

Using a specially-constructed microscope that allows researchers to observe the action of one macromolecule at a time, the team found that a protein motor is able to move back and forth along a microtubule – a molecular track – rather than in one direction, as previously thought. They report their findings in a recent issue of Nature Cell Biology. The proteins in this motor, dynein and dynactin, are the "long-distance truckers" of the cell: working together, they are responsible for transporting cellular cargo from the periphery of a cell toward its nucleus.

"My lab concentrates on the cellular and genetic aspects of the dynein-dynactin motor, while Yale's group delves into the mechanics of the motor itself," says Holzbaur. "We're deconstructing the system to understand how it all works in a living cell. In the lab, we start with a clean microtubule with a motor walking across it, but in the cell it's different: microtubules are packed together, with proteins studded along them, and cellular organelles and mitochondria are crammed in. The motor needs to maneuver around those 'obstructions.'" Goldman and Holzbaur suggest that the ability of the dynein-dynactin motor to move in both directions along the microtubule may provide the necessary maneuvering ability to allow for effective long distance transport.

Earlier this year, as reported in The Journal of Cell Biology, researchers in Holzbaur's lab found that a mutation in dynactin leads to degeneration of motor neurons, the hallmark of motor neuron disease. This mutation decreases the efficiency of the dynein-dynactin motor in "taking out the trash" of the cell, and thus leads to the accumulation of misfolded proteins in the cell, which may in turn lead to the degeneration of the neuron.

Scientists are now finding that many other molecular motors are remarkably flexible in their behavior. In several further papers published in the Proceedings of the National Academy of Sciences and The EMBO Journal, Goldman and colleagues at the University of Illinois found that a "local delivery" motor, termed myosin V, moves cargo with a variable path short distances along another type of cellular track called actin. This flexibility could help myosin V navigate crowded regions of the cell where the actin filaments criss-cross and where other cellular components would otherwise pose an impediment to motion. Defects in myosin V function also result in neurological defects.

Most of these molecular motors are associated with specific diseases or developmental defects, so understanding the puzzling aspects of their behavior in detail is necessary for building nanotechnological machines that, for example, could replace defective motors. "The ultimate goal is to find ways to treat motor neuron disease as well as other diseases that involve cellular motors and also construct nano-scale machines based on these biological motors," says Goldman.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu/

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>