Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure Determined for p53 Tumor Suppressor Protein

19.07.2006
More than half of human cancers involve mutations in the p53 tumor-suppressor gene, suggesting the critical role played by the normal p53 protein in defending against cancer. Similarly, roughly 95 percent of cancer-causing mutations in the p53 protein occur in its DNA-binding core domain, pointing to this region of the p53 protein as being pivotal to its anti-cancer activity.

Clearly, a detailed view of the p53 protein in direct contact with DNA could provide important insights into preventing and treating an array of human cancers. To date, however, despite having learned a good deal about the protein’s biochemistry over the years, scientists have been unable to “see” the protein – using the tools of structural biology – bound to DNA in its naturally occurring form. This naturally occurring form contains a pairing of two p53 proteins, called a dimer, that then binds to a second p53 dimer in a similar way to create the precisely oriented four-protein complex, called a tetramer, that binds DNA.

Now, in a new study featured as a “paper of the week” and on the cover of the July 21 issue of the Journal of Biological Chemistry, researchers at The Wistar Institute have successfully determined the three-dimensional structure of the p53 protein bound as a dimer to DNA and used the structure to produce an accurate model of the p53 tetramer bound to DNA.

“The bottom line is that we now have a detailed picture of how p53 binds DNA,” says Ronen Marmorstein, Ph.D., a professor in the Gene Expression and Regulation Program at Wistar and senior author on the study. “Given the fact that p53 is an important tumor suppressor that is mutated in the majority of human cancers, this will undoubtedly be useful information.”

Earlier work had shown how p53 binds to DNA as a stand-alone entity, a form that does not represent the natural state of p53 binding to DNA. The present work captures p53 bound to DNA in its natural dimeric units and thus allows Marmorstein and colleagues to make new and potentially significant insights into p53 function.

One new insight from the current study, for example, is that the point of contact between the two core domains of a pair of p53 proteins forming a dimer tracks to a part of the protein often mutated in cancers. This suggests that the interface between the two proteins of the dimer is likely as important for the proper functioning of the tetramer as its interface with DNA, which also depends on the interface of the core domains of the two p53 proteins that form a dimer.

In seeking to determine the structure of p53 bound to DNA, the challenge for the scientists was that their efforts to crystallize the p53 dimer bound to DNA consistently resulted in structures that could not bind to DNA. (Crystallization is a prerequisite for obtaining the type of three-dimensional image sought in this study.) The researchers found that the dimers formed in solution prior to crystallization attempts took on a form that was incompatible with DNA binding.

“There’s an inactive form of the p53 dimer that’s unable to bind DNA in the correct fashion,” Marmorstein explains. “We knew there had to be a structural rearrangement of the core domains to allow p53 to bind DNA as a dimer. The core domain is what’s binding the DNA, but within the dimer, the two cores have to be in the proper orientation to bind DNA.

“So we decided that we needed to somehow lock the protein into a conformation that’s compatible with the dimer binding to DNA. We used a chemical trick in which we modified a DNA base to allow it to attach directly to a part of the protein’s core domain. That allowed us to trap the form of the p53 dimer that’s compatible with DNA binding. And we solved the structure. We saw what it looked like.”

The lead author on the Journal of Biological Chemistry study is William C. Ho, affiliated with both Wistar and the University of Pennsylvania. Mary X. Fitzgerald, affiliated with Wistar and the University of Pennsylvania School of Medicine, is also a co-author. Marmorstein is the senior author.

Support for the research was provided by the National Institutes of Health and the Department of Defense. Additional support came from the Commonwealth Universal Research Enhancement Program of the Pennsylvania Department of Health. The work also relied on research conducted at the Cornell High Energy Synchrotron Source, which is supported by the National Science Foundation.

The Wistar Institute is an international leader in biomedical research, with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the country, Wistar has long held the prestigious Cancer Center designation from the National Cancer Institute. Discoveries at Wistar have led to the creation of the rubella vaccine that eradicated the disease in the U.S., rabies vaccines used worldwide, and a new rotavirus vaccine approved in 2006. Wistar scientists have also identified many cancer genes and developed monoclonal antibodies and other important research tools. Today, Wistar is home to eminent melanoma researchers and pioneering scientists working on experimental vaccines against flu, HIV, and other diseases. The Institute works actively to transfer its inventions to the commercial sector to ensure that research advances move from the laboratory to the clinic as quickly as possible. The Wistar Institute: Today’s Discoveries – Tomorrow’s Cures.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>