Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Think fast! Rice undergrad unlocks nerve speed secret

18.07.2006
Study finds protein responsible for quick release of neural signals

In the second it takes you to read these words, tens of thousands of vesicles in your optic nerves are released in sequence, opening tiny surface pores to pass chemical signals to the next cell down the line, telling your brain what you're seeing and your eyes where to move. Thanks to two new studies – including one spearheaded by an undergraduate biochemistry student at Rice University and published online today by Nature Structural and Molecular Biology – scientists have defined the function of a key protein that nerve cells use to pass information quickly.

Like all cells in our bodies, nerve cells are encased in a membrane, a thin layer of fatty tissue that walls off the outside world from the cell's interior. And like other cells, nerve cells use a complex system of proteins as sensors, switches and activators to scan the outside world and decide when to open membrane doorways to take in food, expel waste and export chemical products to the rest of the body.

Many studies suggest that a group of proteins called SNAREs act like the cell's loading dock managers, deciding when to open the door to release shipments of chemical freight. SNAREs form a docking bay for cartons of chemicals encased in their own fatty membranes.

"Nerve cells are one of the few cells in our bodies in which vesicles are prepositioned at the cell membrane, because they have to be ready to release neurotransmitter to the next nerve cell at a moment's notice," said principal researcher James McNew, assistant professor of biochemistry and cell biology.

SNAREs are a key player in membrane fusion. They oversee the merger of the cell's outer membrane with the membrane encasing the chemical freight, and they do it in such a way that the freight can be exported, but no outside cargo can enter.

"With nerve cells, we've known that SNAREs provide the mechanical energy for membrane fusion, and another protein called synaptotagmin is the actuator," McNew said. "We also knew there was a chemical brake in the system, something that held the pre-positioned vesicle in check, but poised for release. These new studies clearly show that the brake is a protein called complexin."

Rice's study, which was conducted in McNew's lab, largely by undergraduate Johanna Schaub, involved in vitro experiments on a synthetic and highly controlled complex of membranes and proteins. Via these experiments, Schaub was able to show that SNARE-driven membrane fusion – the act that opens the door for neurotransmitter to leave the neuronal cell – was inhibited by complexin.

"By halting fusion partway, complexin essentially shortens the response time for signal transmission," said Schaub, who will begin graduate school at Stanford University in the fall. "The nerve cell can almost instantaneously pass on its information."

McNew said the finding is independently confirmed by work published online June 22 by Science magazine. In that study, Columbia University's James Rothman and colleagues created mutant cells with SNAREs on the outside rather than the inside, and they used the cells to show that complexin could inhibit fusion that would otherwise be expected to proceed.

"Complexin is the brake," McNew said. "It says, 'Stop. Don't go any further until you get the signal from synaptotagmin.'"

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>