Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plastic-Protein Hybrid Materials

21.12.2001


Enzymatic films for bioactive surfaces



We encounter them every day in laundry detergent, dishwashing liquid, or shower gel: surfactants - surface-active substances. Surfactants belong to a category of molecules called amphiphiles, molecular hermaphrodites consisting of a water-loving (hydrophilic) "head" and a water-hating (hydrophobic) "tail". Most surfacants are small amphiphilic molecules. However, an international research team working with Roeland J. M. Nolte, University of Nijmegen, has now built "giant amphiphiles", hybrid molecules made of proteins and polymers. These new molecules are not just meant to clean better, they could find uses in biochips as well.

What’s so special about amphiphiles? In aqueous solutions, they organize themselves so that the hydrophobic tails have as little contact with the water as possible. This leads to structures such as micelles, vesicles, or films on the surface of the water (with the amphiphiles’ heads in the water and their tails in the air).


The researchers chose to use the protein streptavidin as the hydrophilic head for the construction of their giant amphiphiles. Streptavidin is made of four identical substructures that are set opposite each other in pairs. Each substructure has a binding site for biotin, a small molecule that is classified among the vitamins. This is what the Dutch researchers use to attach their hydrophobic tail; first they attach biotin molecules to polystyrene, and then they couple two biotinylated polystyrene chains to two neighboring binding sites on the streptovidin. The two opposite binding sites are left open. Just like their smaller cousins, the giant amphiphiles form films on the surface of water.

Next the empty binding sites on the streptovidin come into play; the researchers attach enzymes or other functional proteins, again by using biotin molecules. For example, Nolte and his colleagues tried this with horseradish peroxidase. The catalytic activity of the peroxidase is retained, even when it is coupled to the film.

All of this results in a polymer film with densely packed functional enzymes hanging from it. "Such a film is useful as a biosensor, or as a catalyst," explains Nolte. "Because of their dimensions and their amphiphilic character, plastic-protein hybrids are predestined for lab-on-chip technology."

Frank Maass | alohagalileo

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Existence of a new quasiparticle demonstrated

28.02.2017 | Materials Sciences

Sustainable ceramics without a kiln

28.02.2017 | Materials Sciences

Biofuel produced by microalgae

28.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>