Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A protein complex that untangles DNA

17.07.2006
Every second, the cells constituting our bodies are replaced through cell division. Researchers at Karolinska Institutet have found a piece of the puzzle of how genetic information remains intact despite this continuous exchange of cells. Their results are presented in the latest issue of the scientific journal Molecular Cell.

An adult human consists of about 50,000 billion cells, 1% of which die and are replaced by cell division every day. In order to ensure cell survival and controlled growth of these new cells, the genetic information, stored in DNA molecules, must first be correctly copied and then accurately distributed during cell division. Moreover, to fully ascertain that the new cells will contain the same genetic information as the parental cells, any damage to the DNA, which is organised into several chromosomes, must be repaired.

"A cancer cell often has chromosomal aberrations that can be linked to erroneous copying, separation, or repair of the DNA molecule. By learning about the normal mechanisms that maintain a stable genome we can gain a better position to understand what goes wrong in cancer", says Camilla Sjögren, who leads the research group.

Central to both chromosome repair and distribution during cell division are three related protein complexes.

"Quite a bit is known about two of these complexes. One of them, cohesin, keeps the DNA copies together such that they do not separate too early; while the other, condensin, makes the chromosomes more compact, making the separation easier", says Camilla Sjögren.

The research group has studied the third, less well understood, protein complex, known as the Smc5/6 complex. This protein complex was found to bind to locations on the DNA strand that the researchers had artificially damaged, suggesting that it is directly involved in the repair process. Moreover, the Smc5/6 complex also seems to be required for the disentanglement of undamaged chromosomes before cell division. If these tangles, which are a natural consequence of the DNA copying process, are left unresolved the chromosomes cannot be separated and sent to the two nascent daughter cells. Like in the repair process, the Smc5/6 complex appears to resolve these intertwines by direct interaction with the DNA molecules, but this process is differently regulated as compared to the function in repair.

"Evidence points to that the Smc5/6 complex work in two different pathways, one needed for repair and the other for untangling. We now aim to study how this works on a molecular level. This will bring us one step closer to the general goal – a summary of the many mechanisms that collaborate to maintain our genetic stability", says Camilla Sjögren.

Sara Aldén | EurekAlert!
Further information:
http://www.ki.se

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>